Deforming maps for Lie group covariant creation and annihilation operators

被引:24
作者
Fiore, G [1 ]
机构
[1] Univ Munich, Sekt Phys, Theoret Phys Lehrstuhl Prof Wess, Theresienstr 37, D-80333 Munich, Germany
关键词
D O I
10.1063/1.532439
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Any deformation of a Weyl or Clifford algebra A can be realized through a "deforming map," i.e., a formal change of generators in A. This is true in particular if A is covariant under a Lie algebra g and its deformation is induced by some triangular deformation U(h)g of the Hopf algebra Ug. We propose a systematic method to construct all the corresponding deforming maps, together with the corresponding realizations of the action of U(h)g. The method is then generalized and explicitly applied to the case that U(h)g is the quantum group U(h)sl(2). A preliminary study of the status of deforming maps at the representation level shows in particular that "deformed" Fock representations induced by a compact U(h)g can be interpreted as standard "undeformed" Fock representations describing particles with ordinary Bose or Fermi statistics. (C) 1998 American Institute of Physics.
引用
收藏
页码:3437 / 3452
页数:16
相关论文
共 33 条
[1]  
ABE E, 1980, CAMBRIDGE TRACTS MAT, V85
[2]   DEFORMATION THEORY AND QUANTIZATION .1. DEFORMATIONS OF SYMPLECTIC STRUCTURES [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
ANNALS OF PHYSICS, 1978, 111 (01) :61-110
[3]   DEFORMATION THEORY AND QUANTIZATION .2. PHYSICAL APPLICATIONS [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
ANNALS OF PHYSICS, 1978, 111 (01) :111-151
[4]  
Biedenharn L. C., 1981, ANGULAR MOMENTUM QUA, V8
[5]   THE QUANTUM GROUP SUQ(2) AND A Q-ANALOGUE OF THE BOSON OPERATORS [J].
BIEDENHARN, LC .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (18) :L873-L878
[6]   DEFORMING MAPS FOR QUANTUM ALGEBRAS [J].
CURTRIGHT, TL ;
ZACHOS, CK .
PHYSICS LETTERS B, 1990, 243 (03) :237-244
[7]   QUANTUM ALGEBRA DEFORMING MAPS, CLEBSCH-GORDAN-COEFFICIENTS, COPRODUCTS, R AND U MATRICES [J].
CURTRIGHT, TL ;
GHANDOUR, GI ;
ZACHOS, CK .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (03) :676-688
[8]  
Drinfeld V.G., 1990, Leningrad Math. J., V1, P1419
[9]  
Drinfeld V G, 1987, P INT C MATH BERKELE, V1, P798
[10]  
DRINFELD VG, 1983, DOKL AKAD NAUK SSSR+, V273, P531