Overexpression of the dual-specificity phosphatase MKP-4/DUSP-9 protects against stress-induced insulin resistance

被引:89
作者
Emanuelli, Brice [1 ]
Eberle, Delphine [1 ]
Suzuki, Ryo [1 ]
Kahn, C. Ronald [1 ]
机构
[1] Harvard Univ, Sch Med, Joslin Diabet Ctr, Boston, MA 02215 USA
关键词
cytokines; diabetes; kinases; obesity;
D O I
10.1073/pnas.0712275105
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Insulin resistance, a hallmark of type 2 diabetes and obesity, is associated with increased activity of MAP and stress-activated protein (SAP) kinases, which results in decreased insulin signaling. Our goal was to investigate the role of MAP kinase phosphatase-4 (MKP-4) in modulating this process. We found that MKP-4 expression is up-regulated during adipocyte and myocyte differentiation in vitro and up-regulated during fasting in white adipose tissue in vivo. Overexpression of MKP-4 in 3T3-L1 cells inhibited ERK and JNK phosphorylation and, to a lesser extent, p38MAPK phosphorylation. As a result, the phosphorylation of IRS-1 serine 307 induced by anisomycin was abolished, leading to a sensitization of insulin signaling with recovery of insulin-stimulated IRS-1 tyrosine phosphorylation, IRS-1 docking with phosphatidylinositol 3-kinase, and Akt phosphorylation. MKP-4 also reversed the effect of TNF-alpha to inhibit insulin signaling; alter IL-6, GIut1 and GIut4 expression; and inhibit insulin-stimulated glucose uptake in 3T3-L1 adipocytes. Overexpression of MKP-4 in the liver of ob/ob mice decreased ERK and JNK phosphorylation, leading to a reduction in fed and fasted glycemia, improved glucose intolerance, decreased expression of gluconeogenic and lipogenic genes, and reduced hepatic steatosis. Thus, MKP-4 has a protective effect against the development of insulin resistance through its ability to dephosphorylate and inactivate crucial mediators of stress-induced insulin resistance, such as ERK and JNK, and increasing MKP-4 activity might provide a therapy for insulin-resistant disorders.
引用
收藏
页码:3545 / 3550
页数:6
相关论文
共 33 条
[1]   Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action [J].
Aguirre, V ;
Werner, ED ;
Giraud, J ;
Lee, YH ;
Shoelson, SE ;
White, MF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (02) :1531-1537
[2]   The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser307 [J].
Aguirre, V ;
Uchida, T ;
Yenush, L ;
Davis, R ;
White, MF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (12) :9047-9054
[3]   Reduction of insulin-stimulated glucose uptake in L6 myotubes by the protein kinase inhibitor SB203580 is independent of p38MAPK activity [J].
Antonescu, CN ;
Huang, C ;
Niu, W ;
Liu, Z ;
Eyers, PA ;
Heidenreich, KA ;
Bilan, PJ ;
Klip, A .
ENDOCRINOLOGY, 2005, 146 (09) :3773-3781
[4]   The extracellular signal-regulated kinase isoform ERK1 is specifically required for in vitro and in vivo adipogenesis [J].
Bost, F ;
Aouadi, M ;
Caron, L ;
Even, P ;
Belmonte, N ;
Prot, M ;
Dani, C ;
Hofman, P ;
Pagès, G ;
Pouysségur, J ;
Le Marchand-Brustel, Y ;
Binétruy, B .
DIABETES, 2005, 54 (02) :402-411
[5]   Catalytic activation of the phosphatase MKP-3 by ERK2 mitogen-activated protein kinase [J].
Camps, M ;
Nichols, A ;
Gillieron, C ;
Antonsson, B ;
Muda, M ;
Chabert, C ;
Boschert, U ;
Arkinstall, S .
SCIENCE, 1998, 280 (5367) :1262-1265
[6]   Enhanced basal activation of mitogen-activated protein kinases in adipocytes from type 2 diabetes - Potential role of p38 in the downregulation of GLUT4 expression [J].
Carlson, CJ ;
Koterski, S ;
Sciotti, RJ ;
Poccard, GB ;
Rondinone, CM .
DIABETES, 2003, 52 (03) :634-641
[7]   The dual-specificity protein phosphatase DUSP9/MKP-4 is essential for placental function but is not required for normal embryonic development [J].
Christie, GR ;
Williams, DJ ;
MacIsaac, F ;
Dickinson, RJ ;
Rosewell, I ;
Keyse, SM .
MOLECULAR AND CELLULAR BIOLOGY, 2005, 25 (18) :8323-8333
[8]   SOCS-3 is an insulin-induced negative regulator of insulin signaling [J].
Emanuelli, B ;
Peraldi, P ;
Filloux, C ;
Sawka-Verhelle, D ;
Hilton, D ;
Van Obberghen, E .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (21) :15985-15991
[9]   Tumor necrosis factor α-mediated insulin resistance, but not dedifferentiation, is abrogated by MEK1/2 inhibitors in 3T3-L1 adipocytes [J].
Engelman, JA ;
Berg, AH ;
Lewis, RY ;
Lisanti, MP ;
Scherer, PE .
MOLECULAR ENDOCRINOLOGY, 2000, 14 (10) :1557-1569
[10]   Structure and regulation of MAPK phosphatases [J].
Farooq, A ;
Zhou, MM .
CELLULAR SIGNALLING, 2004, 16 (07) :769-779