Constant temperature constrained molecular dynamics: The Newton-Euler inverse mass operator method

被引:69
作者
Vaidehi, N
Jain, A
Goddard, WA
机构
[1] CALTECH,MAT & PROC SIMULAT CTR,BECKMAN INST 13974,DIV CHEM & CHEM ENGN CN 9114,PASADENA,CA 91125
[2] CALTECH,JET PROP LAB,PASADENA,CA 91109
关键词
D O I
10.1021/jp953043o
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Newton-Euler inverse mass operator (NEIMO) method for internal coordinate molecular dynamics (MD) of macromolecules (proteins and polymers) leads to stable dynamics for time steps about 10 times larger than conventional dynamics (e.g., 20 or 30 fs rather than 1 or 2 fs for systems containing hydrogens). NEIMO is practical for large systems since the computation time scales linearly with the number of degrees of freedom N(instead of the N-3 scaling for conventional constrained MD methods). In this paper we generalize the NEIMO formalism to the Nose (and Hoover) thermostat to derive the Nose and Hoover equations of motion for constrained canonical ensemble molecular dynamics. We also examined the optimum mass, Q, determining the time scale (tau(s)) for exchange of energy with the heat bath for NEIMO-Hoover dynamics of polymers. We carried out NEIMO-Hoover simulations on the amorphous polymers poly(vinyl chloride) and poly(vinylidene fluoride), where we find that time steps of 20-30 fs lead to stable dynamics (10 times larger than for Cartesian dynamics). The computational efficiency of the NEIMO canonical MD method should make it a powerful tool for MD simulations of macromolecular materials.
引用
收藏
页码:10508 / 10517
页数:10
相关论文
共 25 条
[1]  
ABRAHAM FF, 1983, PHYS REV LETT, V78, P2626
[2]   MOLECULAR-DYNAMICS SIMULATIONS AT CONSTANT PRESSURE AND-OR TEMPERATURE [J].
ANDERSEN, HC .
JOURNAL OF CHEMICAL PHYSICS, 1980, 72 (04) :2384-2393
[3]  
[Anonymous], 1991, PROG THEOR PHYS SUPP, DOI [DOI 10.1143/PTPS.103.1, DOI 10.1143/PTP.103.1]
[4]   ARGON SHEAR VISCOSITY VIA A LENNARD-JONES POTENTIAL WITH EQUILIBRIUM AND NONEQUILIBRIUM MOLECULAR DYNAMICS [J].
ASHURST, WT ;
HOOVER, WG .
PHYSICAL REVIEW LETTERS, 1973, 31 (04) :206-208
[5]  
Cagin T., 1991, COMPUT POLYMER SCI, V1, P241
[6]   ERGODICITY AND DYNAMIC PROPERTIES OF CONSTANT-TEMPERATURE MOLECULAR-DYNAMICS [J].
CHO, K ;
JOANNOPOULOS, JD .
PHYSICAL REVIEW A, 1992, 45 (10) :7089-7097
[7]   ATOMIC LEVEL SIMULATIONS ON A MILLION PARTICLES - THE CELL MULTIPOLE METHOD FOR COULOMB AND LONDON NONBOND INTERACTIONS [J].
DING, HQ ;
KARASAWA, N ;
GODDARD, WA .
JOURNAL OF CHEMICAL PHYSICS, 1992, 97 (06) :4309-4315
[8]   APPLICABILITY OF NOSE ISOTHERMAL REVERSIBLE DYNAMICS [J].
DITOLLA, FD ;
RONCHETTI, M .
PHYSICAL REVIEW E, 1993, 48 (03) :1726-1737
[9]   EXTENSIONS OF THE MOLECULAR-DYNAMICS SIMULATION METHOD .2. ISOTHERMAL SYSTEMS [J].
HAILE, JM ;
GUPTA, S .
JOURNAL OF CHEMICAL PHYSICS, 1983, 79 (06) :3067-3076
[10]   CANONICAL DYNAMICS - EQUILIBRIUM PHASE-SPACE DISTRIBUTIONS [J].
HOOVER, WG .
PHYSICAL REVIEW A, 1985, 31 (03) :1695-1697