Differential regulation of p53-dependent and -independent proliferating cell nuclear antigen gene transcription by 12 S E1A oncoprotein requires CBP

被引:14
作者
Karuppayil, SM
Moran, E
Das, GM
机构
[1] Univ Texas, Hlth Sci Ctr, Canc Therapy & Res Ctr, Gene Regulat Lab, San Antonio, TX 78229 USA
[2] Univ Texas, Hlth Sci Ctr, Dept Cellular & Struct Biol, San Antonio, TX 78229 USA
[3] Temple Univ, Sch Med, Fels Inst Canc Res & Mol Biol, Philadelphia, PA 19140 USA
关键词
D O I
10.1074/jbc.273.28.17303
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The tumor suppressor protein p53 and the adenoviral 12 S E1A oncoprotein are both known to elicit their biological effects mainly by regulating the transcription of important cellular genes. The human proliferating cell nuclear antigen (PCNA) gene is a transcriptional target of both p53 and E1A. We have analyzed the effects of p53 and 12 S E1A, separately as well as together, on PCNA gene transcription. Our results showed that whereas both p53 and 12 S E1A separately activated PCNA transcription, 12 S E1A repressed p53-mediated transcriptional activation. Thus, 12 S E1A uses a dual strategy of transcriptional activation and repression to take control of the cellular PCNA gene regulation. The cyclic AMP-response element in the PCNA core promoter, besides being crucial for basal transcription, synergizes with p53 to activate transcription. The cyclic AMP response element-binding protein (CREB)-binding protein (CBP) is an essential component of both the transcriptional activation and repression by E1A. Our data demonstrate for the first time that E1A can modulate CBP function to activate PCNA transcription, while at the same time repressing p53-mediated activation by disrupting CBP interaction with p53, thereby uncoupling PCNA transcription from the regulatory effects of p53.
引用
收藏
页码:17303 / 17306
页数:4
相关论文
共 34 条
[1]   A FAMILY OF TRANSCRIPTIONAL ADAPTER PROTEINS TARGETED BY THE E1A ONCOPROTEIN [J].
ARANY, Z ;
NEWSOME, D ;
OLDREAD, E ;
LIVINGSTON, DM ;
ECKNER, R .
NATURE, 1995, 374 (6517) :81-84
[2]   Recruitment of p300/CBP in p53-dependent signal pathways [J].
Avantaggiati, ML ;
Ogryzko, V ;
Gardner, K ;
Giordano, A ;
Levine, AS ;
Kelly, K .
CELL, 1997, 89 (07) :1175-1184
[3]   PHOSPHORYLATED CREB BINDS SPECIFICALLY TO THE NUCLEAR-PROTEIN CBP [J].
CHRIVIA, JC ;
KWOK, RPS ;
LAMB, N ;
HAGIWARA, M ;
MONTMINY, MR ;
GOODMAN, RH .
NATURE, 1993, 365 (6449) :855-859
[4]   COOPERATION BETWEEN CORE PROMOTER ELEMENTS INFLUENCES TRANSCRIPTIONAL ACTIVITY IN-VIVO [J].
COLGAN, J ;
MANLEY, JL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (06) :1955-1959
[5]   CBP as a transcriptional coactivator of c-Myb [J].
Dai, P ;
Akimaru, H ;
Tanaka, Y ;
Hou, DX ;
Yasukawa, T ;
KaneiIshii, C ;
Takahashi, T ;
Ishii, S .
GENES & DEVELOPMENT, 1996, 10 (05) :528-540
[6]   BASAL PROMOTER ELEMENTS AS A SELECTIVE DETERMINANT OF TRANSCRIPTIONAL ACTIVATOR FUNCTION [J].
DAS, G ;
HINKLEY, CS ;
HERR, W .
NATURE, 1995, 374 (6523) :657-660
[7]  
DAS G, 1993, J BIOL CHEM, V268, P25026
[8]  
ENAMI KH, 1995, MOL CELL BIOL, V15, P5906
[9]   Synergistic activation of transcription by CBP and p53 [J].
Gu, W ;
Shi, XL ;
Roeder, RG .
NATURE, 1997, 387 (6635) :819-823
[10]   TRANSCRIPTION FACTOR ATF CDNA CLONES - AN EXTENSIVE FAMILY OF LEUCINE ZIPPER PROTEINS ABLE TO SELECTIVELY FORM DNA-BINDING HETERODIMERS [J].
HAI, TW ;
LIU, F ;
COUKOS, WJ ;
GREEN, MR .
GENES & DEVELOPMENT, 1989, 3 (12B) :2083-2090