Central melanocortins and the regulation of weight during acute and chronic disease

被引:64
作者
Marks, DL [1 ]
Cone, RD [1 ]
机构
[1] Oregon Hlth & Sci Univ, Dept Pediat Endocrinol, Vollum Inst, Portland, OR 97201 USA
来源
RECENT PROGRESS IN HORMONE RESEARCH, VOL 56 | 2001年 / 56卷
关键词
D O I
10.1210/rp.56.1.359
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Recent advances in our understanding of the regulation of body weight, appetite, and metabolic rate have highlighted the role of the adipose-derived hormone leptin and its receptor as fundamental modulators of these processes. Investigations of the neural targets for leptin action - as well as characterization of the agouti obesity syndrome - have, in turn, led to the discovery of fundamental neural pathways involved in the central regulation of energy homeostasis. In particular, the central melanocortin system has been shown to regulate appetite and metabolic rate in rodents; mutations in this system have been demonstrated to result in obesity in humans. Overall, the melanocortin system appears to function as a bidirectional rheostat in the regulation of energy intake and expenditure in rodents and potentially in humans. The first section of this chapter will focus on the development of our understanding of melanocortin physiology in the context of obesity. In particular, recent data regarding the interplay between melanocortin and neuropeptide Y (NPY) signaling at a cellular level will be discussed. The following section will discuss the hypothesis that melanocortin signaling plays a role in pathological weight loss and hypermetabolism observed in murine cachexia models. The potential role of this system in integrating a variety of anorexic and cachexic signals, as well as the potential for its pharmacological manipulation in the treatment of human cachexia, will be discussed.
引用
收藏
页码:359 / 375
页数:17
相关论文
共 129 条
[1]   Brain melanocortin receptors: From cloning to function [J].
Adan, RAH ;
Gispen, WH .
PEPTIDES, 1997, 18 (08) :1279-1287
[2]   Role of leptin in the neuroendocrine response to fasting [J].
Ahima, RS ;
Prabakaran, D ;
Mantzoros, C ;
Qu, DQ ;
Lowell, B ;
MaratosFlier, E ;
Flier, JS .
NATURE, 1996, 382 (6588) :250-252
[3]   ENDOTOXIN-ELICITED FEVER AND ANOREXIA AND ELFAZEPAM-STIMULATED FEEDING IN SHEEP [J].
BAILE, CA ;
NAYLOR, J ;
MCLAUGHLIN, CL ;
CATANZARO, CA .
PHYSIOLOGY & BEHAVIOR, 1981, 27 (02) :271-277
[4]   Leptin receptor mRNA identifies a subpopulation of neuropeptide Y neurons activated by fasting in rat hypothalamus [J].
Baskin, DG ;
Breininger, JF ;
Schwartz, MW .
DIABETES, 1999, 48 (04) :828-833
[5]   The full-length leptin receptor has signaling capabilities of interleukin 6-type cytokine receptors [J].
Baumann, H ;
Morella, KK ;
White, DW ;
Dembski, M ;
Bailon, PS ;
Kim, HK ;
Lai, CF ;
Tartaglia, LA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (16) :8374-8378
[6]   EFFECTS OF INTRACEREBROVENTRICULAR INJECTION OF NEUROPEPTIDE-Y ON ENERGY-METABOLISM [J].
BILLINGTON, CJ ;
BRIGGS, JE ;
GRACE, M ;
LEVINE, AS .
AMERICAN JOURNAL OF PHYSIOLOGY, 1991, 260 (02) :R321-R327
[7]   EFFECT OF CENTRALLY ADMINISTERED NEUROPEPTIDE-Y ON HYPOTHALAMIC AND HYPOPHYSEAL PROOPIOMELANOCORTIN-DERIVED PEPTIDES IN THE RAT [J].
BLASQUEZ, C ;
JEGOU, S ;
FRIARD, O ;
TONON, MC ;
FOURNIER, A ;
VAUDRY, H .
NEUROSCIENCE, 1995, 68 (01) :221-227
[8]  
BLUM WF, 1997, J CLIN METAB, V82, P2094
[9]   Independent and additive effects of central POMC and leptin pathways on murine obesity [J].
Boston, BA ;
Blaydon, KM ;
Varnerin, J ;
Cone, RD .
SCIENCE, 1997, 278 (5343) :1641-1644
[10]   The neuropeptide Y agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice [J].
Broberger, C ;
Johansen, J ;
Johansson, C ;
Schalling, M ;
Hökfelt, T .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (25) :15043-15048