Effect of anode film resistance on the charge/discharge capacity of a lithium-ion battery

被引:102
作者
Christensen, J [1 ]
Newman, J [1 ]
机构
[1] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA
关键词
D O I
10.1149/1.1612501
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Lithium-ion batteries are prone to failure, because both their capacity and rate capability decrease with cycling. Side reactions, which decrease the cell's cyclable lithium content, can be responsible for capacity fade. An increase in cyclable lithium content is also possible, but is limited by the initial overall lithium content. Formation of a solid electrolyte interphase film on the carbonaceous anode not only consumes cyclable lithium, but also increases the anode resistance, thus reducing the rate capability of the cell, as demonstrated via computer simulation of a lithium-ion cell. Simulations also suggest that the use of cutoff potentials may not effectively prevent undesired irreversible side reactions on overcharge or overdischarge. (C) 2003 The Electrochemical Society.
引用
收藏
页码:A1416 / A1420
页数:5
相关论文
共 20 条
  • [1] Electrochemical SPM investigation of the solid electrolyte interphase film formed on HOPG electrodes
    Alliata, D
    Kötz, R
    Novák, P
    Siegenthaler, H
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2000, 2 (06) : 436 - 440
  • [2] Capacity fade mechanisms and side reactions in lithium-ion batteries
    Arora, P
    White, RE
    Doyle, M
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (10) : 3647 - 3667
  • [3] On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries
    Aurbach, D
    Markovsky, B
    Weissman, I
    Levi, E
    Ein-Eli, Y
    [J]. ELECTROCHIMICA ACTA, 1999, 45 (1-2) : 67 - 86
  • [4] The study of surface phenomena related to electrochemical lithium intercalation into LixMOy host materials (M = Ni, Mn)
    Aurbach, D
    Gamolsky, K
    Markovsky, B
    Salitra, G
    Gofer, Y
    Heider, U
    Oesten, R
    Schmidt, M
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (04) : 1322 - 1331
  • [5] A study of highly oriented pyrolytic graphite as a model for the graphite anode in Li-ion batteries
    Bar-Tow, D
    Peled, E
    Burstein, L
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (03) : 824 - 832
  • [6] Self-discharge of LiMn2O4/C Li-ion cells in their discharged state -: Understanding by means of three-electrode measurements
    Blyr, A
    Sigala, C
    Amatucci, G
    Guyomard, D
    Chabre, Y
    Tarascon, JM
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (01) : 194 - 209
  • [7] Evaluation of graphite materials as anodes for lithium-ion batteries
    Cao, F
    Barsukov, IV
    Bang, HJ
    Zaleski, P
    Prakash, J
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (10) : 3579 - 3583
  • [8] Doyle C., 1995, Ph.D. Thesis
  • [9] MODELING OF GALVANOSTATIC CHARGE AND DISCHARGE OF THE LITHIUM POLYMER INSERTION CELL
    DOYLE, M
    FULLER, TF
    NEWMAN, J
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (06) : 1526 - 1533
  • [10] RELAXATION PHENOMENA IN LITHIUM-ION-INSERTION CELLS
    FULLER, TF
    DOYLE, M
    NEWMAN, J
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (04) : 982 - 990