Trp-cage: Folding free energy landscape in explicit water

被引:328
作者
Zhou, RH [1 ]
机构
[1] IBM Corp, Thomas J Watson Res Ctr, Computat Biol Ctr, Yorktown Hts, NY 10598 USA
[2] Columbia Univ, Dept Chem, New York, NY 10027 USA
关键词
D O I
10.1073/pnas.2233312100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Trp-cage is a 20-residue miniprotein, which is believed to be the fastest folder known so far. In this study, the folding free energy landscape of Trp-cage has been explored in explicit solvent by using an OPLSAA force field with periodic boundary condition. A highly parallel replica exchange molecular dynamics method is used for the conformation space sampling, with the help of a recently developed efficient molecular dynamics algorithm P3ME/ RESPA (particle-particle particle-mesh Ewald/reference system propagator algorithm). A two-step folding mechanism is proposed that involves an intermediate state where two correctly formed partial hydrophobic cores are separated by an essential salt-bridge between residues Asp-9 and Arg-16 near the center of the peptide. This metastable intermediate state provides an explanation for the superfast folding process. The free energy landscape is found to be rugged at low temperatures, and then becomes smooth and funnel-like above 340 K. The lowest free energy structure at 300 K is only 1.50 Angstrom C-alpha-RMSD (C-alpha-rms deviation) from the NMR structures. The simulated nuclear Overhauser effect pair distances are in excellent agreement with the raw NMR data. The temperature dependence of the Trp-cage population, however, is found to be significantly different from experiment, with a much higher melting transition temperature above 400 K (experimental 315 K), indicating that the current force fields, parameterized at room temperature, need to be improved to correctly predict the temperature dependence.
引用
收藏
页码:13280 / 13285
页数:6
相关论文
共 32 条
[1]  
[Anonymous], 1998, SPIN GLASSES RANDOM
[2]   Accurate ab initio quantum chemical determination of the relative energetics of peptide conformations and assessment of empirical force fields [J].
Beachy, MD ;
Chasman, D ;
Murphy, RB ;
Halgren, TA ;
Friesner, RA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (25) :5908-5920
[3]   Chemical physics of protein folding [J].
Brooks, CL ;
Gruebele, M ;
Onuchic, JN ;
Wolynes, PG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (19) :11037-11038
[4]   Protein folding mediated by solvation:: Water expulsion and formation of the hydrophobic core occur after the structural collapse [J].
Cheung, MS ;
García, AE ;
Onuchic, JN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (02) :685-690
[5]   From Levinthal to pathways to funnels [J].
Dill, KA ;
Chan, HS .
NATURE STRUCTURAL BIOLOGY, 1997, 4 (01) :10-19
[6]   OPTIMIZED MONTE-CARLO DATA-ANALYSIS [J].
FERRENBERG, AM ;
SWENDSEN, RH .
PHYSICAL REVIEW LETTERS, 1989, 63 (12) :1195-1198
[7]   Large scale simulation of macromolecules in solution: Combining the periodic fast multipole method with multiple time step integrators [J].
Figueirido, F ;
Levy, RM ;
Zhou, RH ;
Berne, BJ .
JOURNAL OF CHEMICAL PHYSICS, 1997, 106 (23) :9835-9849
[8]   LARGE-AMPLITUDE NONLINEAR MOTIONS IN PROTEINS [J].
GARCIA, AE .
PHYSICAL REVIEW LETTERS, 1992, 68 (17) :2696-2699
[9]  
García AE, 2001, PROTEINS, V42, P345, DOI 10.1002/1097-0134(20010215)42:3<345::AID-PROT50>3.0.CO
[10]  
2-H