Mitochondrial permeability transition in CNS trauma: Cause or effect of neuronal cell death?

被引:299
作者
Sullivan, PG
Rabchevsky, AG
Waldmeier, PC
Springer, JE
机构
[1] Univ Kentucky, Spinal Cord & Brain Injury Res Ctr, Lexington, KY 40536 USA
[2] Univ Kentucky, Dept Anat & Neurobiol, Lexington, KY 40536 USA
[3] Univ Kentucky, Dept Physiol, Lexington, KY 40536 USA
[4] Novartis Pharma Ltd, Nervous Syst Res, Basel, Switzerland
关键词
neuronal cell death; reactive oxygen species; mitochondrial permeability transition pore; mitochondrial dysfunction; traumatic brain injury; spinal cord injury;
D O I
10.1002/jnr.20292
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Experimental traumatic brain injury (TBI) and spinal cord injury (SCI) result in a rapid and significant necrosis of neuronal tissue at the site of injury. In the ensuing hours and days, secondary injury exacerbates the primary damage, resulting in significant neurologic dysfunction. It is believed that alterations in excitatory amino acids (EAA), increased reactive oxygen species (ROS), and the disruption of Ca2+ homeostasis are major factors contributing to the ensuing neuropathology. Mitochondria serve as the powerhouse of the cell by maintaining ratios of ATP:ADP that thermodynamically favor the hydrolysis of ATP to ADP + P-i, yet a byproduct of this process is the generation of ROS. Proton-pumping by components of the electron transport system (ETS) generates a membrane potential (DeltaPsi) that can then be used to phosphorylate ADP or sequester Ca2+ out of the cytosol into the mitochondrial matrix. This allows mitochondria to act as cellular Ca2+ sinks and to be in phase with changes in cytosolic Ca2+ levels. Under extreme loads of Ca2+, however, opening of the mitochondrial permeability transition pore (mPTP) results in the extrusion of mitochondrial Ca2+ and other high- and low-molecular weight components. This catastrophic event discharges DeltaPsi and uncouples the ETS from ATP production. Cyclosporin A (CsA), a potent immunosuppressive drug, inhibits mitochondrial permeability transition (mPT) by binding to matrix cyclophilin D and blocking its binding to the adenine nucleotide translocator. Peripherally administered CsA attenuates mitochondrial dysfunction and neuronal damage in an experimental rodent model of TBI, in a dose-dependent manner. The underlying mechanism of neuroprotection afforded by CsA is most likely via interaction with the mPTP because the immunosuppressant FK506, which has no effect on the mPT, was not neuroprotective. When CsA was administrated after experimental SCI at the same dosage and regimen used TBI paradigms, however, it had no beneficial neuroprotective effects. This review takes a comprehensive and critical look at the evidence supporting the role for mPT in central nervous system (CNS) trauma and highlights the differential responses of CNS mitochondria to mPT induction and the implications this has for therapeutically targeting the mPT in TBI and SCI. (C) 2004 Wiley-Liss. Inc.
引用
收藏
页码:231 / 239
页数:9
相关论文
共 87 条
[1]   Impaired mitochondrial function, oxidative stress and altered antioxidant enzyme activities following traumatic spinal cord injury [J].
Azbill, RD ;
Mu, XJ ;
BruceKeller, AJ ;
Mattson, MP ;
Springer, JE .
BRAIN RESEARCH, 1997, 765 (02) :283-290
[2]   Blood-brain barrier breach following cortical contusion in the rat [J].
Baldwin, SA ;
Fugaccia, I ;
Brown, DR ;
Brown, LV ;
Scheff, SW .
JOURNAL OF NEUROSURGERY, 1996, 85 (03) :476-481
[3]  
BERDEN JHM, 1985, LANCET, V1, P219
[4]   RECENT PROGRESS ON REGULATION OF THE MITOCHONDRIAL PERMEABILITY TRANSITION PORE - A CYCLOSPORINE-SENSITIVE PORE IN THE INNER MITOCHONDRIAL-MEMBRANE [J].
BERNARDI, P ;
BROEKEMEIER, KM ;
PFEIFFER, DR .
JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 1994, 26 (05) :509-517
[5]   The permeability transition pore. Control points of a cyclosporin A-sensitive mitochondrial channel involved in cell death [J].
Bernardi, P .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1996, 1275 (1-2) :5-9
[6]   Complexes between porin, hexokinase, mitochondrial creatine kinase and adenylate translocator display properties of the permeability transition pore.: Implication for regulation of permeability transition by the kinases [J].
Beutner, G ;
Rück, A ;
Riede, B ;
Brdiczka, D .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 1998, 1368 (01) :7-18
[7]   Complexes between kinases, mitochondrial porin and adenylate translocator in rat brain resemble the permeability transition pore [J].
Beutner, G ;
Ruck, A ;
Riede, B ;
Welte, W ;
Brdiczka, D .
FEBS LETTERS, 1996, 396 (2-3) :189-195
[8]  
Bindokas VP, 1998, J NEUROSCI, V18, P4570
[9]  
BRAUGHLER JM, 1992, J NEUROTRAUMA, V9, P1
[10]   Bcl-2 and Bax regulate the channel activity of the mitochondrial adenine nucleotide translocator [J].
Brenner, C ;
Cadiou, H ;
Vieira, HLA ;
Zamzami, N ;
Marzo, I ;
Xie, ZH ;
Leber, B ;
Andrews, D ;
Duclohier, H ;
Reed, JC ;
Kroemer, G .
ONCOGENE, 2000, 19 (03) :329-336