The STT3a subunit lsoform of the arabidopsis oligosaccharyltransferase controls adaptive responses to salt/osmotic stress

被引:169
作者
Koiwa, H [1 ]
Li, F
McCully, MG
Mendoza, I
Koizumi, N
Manabe, Y
Nakagawa, Y
Zhu, JH
Rus, A
Pardo, JM
Bressan, RA
Hasegawa, PM
机构
[1] Texas A&M Univ, Dept Hort Sci, College Stn, TX 77843 USA
[2] Purdue Univ, Ctr Plant Environm Stress Physiol, W Lafayette, IN 47907 USA
[3] Consejo Super Invest Cientificas, Inst Recursos Nat & Agrobiol, Seville 41012, Spain
[4] Nara Inst Sci & Technol, Ikoma 6300192, Japan
关键词
D O I
10.1105/tpc.013862
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Arabidopsis stt3a-1 and stt3a-2 mutations cause NaCl/osmotic sensitivity that is characterized by reduced cell division in the root meristem. Sequence comparison of the STT3a gene identified a yeast ortholog, STT3, which encodes an essential subunit of the oligosaccharyltransferase complex that is involved in protein N-glycosylation. NaCl induces the unfolded protein response in the endoplasmic reticulum (ER) and cell cycle arrest in root tip cells of stt3a seedlings, as determined by expression profiling of ER stress-responsive chaperone (BiP-GUS) and cell division [CycB1;1-GUS) genes, respectively. Together, these results indicate that plant salt stress adaptation involves ER stress signal regulation of cell cycle progression. Interestingly, a mutation (stt3b-1) in another Arabidopsis STT3 isogene (STT3b) does not cause NaCl sensitivity. However, the stt3a-1 stt3b-1 double mutation is gametophytic lethal. Apparently, STT3a and STT3b have overlapping and essential functions in plant growth and developmental processes, but the pivotal and specific protein glycosylation that is a necessary for recovery from the unfolded protein response and for cell cycle progression during salt/osmotic stress recovery is associated uniquely with the function of the STT3a isoform.
引用
收藏
页码:2273 / 2284
页数:12
相关论文
共 60 条
[1]   Regulation of cell cycle progression by Swe1p and Hog1a following hypertonic stress [J].
Alexander, MR ;
Tyers, M ;
Perret, M ;
Craig, BM ;
Fang, KS ;
Gustin, MC .
MOLECULAR BIOLOGY OF THE CELL, 2001, 12 (01) :53-62
[2]   Enhanced accumulation of BiP in transgenic plants confers tolerance to water stress [J].
Alvim, FC ;
Carolino, SMB ;
Cascardo, JCM ;
Nunes, CC ;
Martinez, CA ;
Otoni, WC ;
Fontes, EPB .
PLANT PHYSIOLOGY, 2001, 126 (03) :1042-1054
[3]   Different myrosinase and idioblast distribution in Arabidopsis and Brassica napus [J].
Andréasson, E ;
Jorgensen, LB ;
Höglund, AS ;
Rask, L ;
Meijer, J .
PLANT PHYSIOLOGY, 2001, 127 (04) :1750-1763
[4]   AN OBLIGATORY ROLE OF PROTEIN GLYCOSYLATION IN THE LIFE-CYCLE OF YEAST-CELLS [J].
ARNOLD, E ;
TANNER, W .
FEBS LETTERS, 1982, 148 (01) :49-53
[5]  
Benton BK, 1996, CURR GENET, V29, P106, DOI 10.1007/s002940050024
[6]   Arabidopsis glucosidase I mutants reveal a critical role of N-glycan trimming in seed development [J].
Boisson, M ;
Gomord, V ;
Audran, C ;
Berger, N ;
Dubreucq, B ;
Granier, F ;
Lerouge, P ;
Faye, L ;
Caboche, M ;
Lepiniec, L .
EMBO JOURNAL, 2001, 20 (05) :1010-1019
[7]   Essential role of calcineurin in response to endoplasmic reticulum stress [J].
Bonilla, M ;
Nastase, KK ;
Cunningham, KW .
EMBO JOURNAL, 2002, 21 (10) :2343-2353
[8]   Mammalian unfolded protein response inhibits cyclin D1 translation and cell-cycle progression [J].
Brewer, JW ;
Hendershot, LM ;
Sherr, CJ ;
Diehl, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (15) :8505-8510
[9]   The cellulose-deficient Arabidopsis mutant rsw3 is defective in a gene encoding a putative glucosidase II, an enzyme processing N-glycans during ER quality control [J].
Burn, JE ;
Hurley, UA ;
Birch, RJ ;
Arioli, T ;
Cork, A ;
Williamson, RE .
PLANT JOURNAL, 2002, 32 (06) :949-960
[10]   Expression of cell cycle regulatory genes and morphological alterations in response to salt stress in Arabidopsis thaliana [J].
Burssens, S ;
Himanen, K ;
van de Cotte, B ;
Beeckman, T ;
Van Montagu, M ;
Inzé, D ;
Verbruggen, N .
PLANTA, 2000, 211 (05) :632-640