Characterization of alternative splicing products of bZIP transcription factors OsABI5

被引:77
作者
Zou, Meijuan [1 ]
Guan, Yucheng [1 ]
Ren, Haibo [1 ]
Zhang, Fang [1 ]
Chen, Fan [1 ]
机构
[1] Chinese Acad Sci, Natl Ctr Plant Gene Res, Key Lab Mol & Dev Biol, Inst Genet & Dev Biol, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
bZIP transcription factor; splicing variants; OsABI5-1 and OsABI5-2;
D O I
10.1016/j.bbrc.2007.05.226
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Alternative splicing allows many gene products to alter their biological functions. A bZIP-type transcription factor, OsABI5, undergoes alternative splicing. Two OsABI5 splicing variants were identified, designated OsABI5-1, and OsABI5-2 and their different expression patterns in tissues were analyzed. Despite a completely identical functional domain, OsABI5-2 could specifically bind to G-box element, but OsABI5-1 could not; the transactivation activity of OsABI5-1 was higher than that of OsABI5-2; the interaction strength of OsABI5-2 and OsVP1 was stronger than that of OsABI5-1 and OsVP1; indicating a different function in the regulation of downstream target genes. Complementation tests and ABA (abscisic acid) hypersensitivity of Arabidopsis transgenic lines revealed the redundant function of OsABI5 splicing variants in ABA signaling. The interaction between OsABI5-1 and OsABI5-2 was also confirmed. These results suggest that OsABI5 variants may have overlapping and distinct functions to fine tune gene expression in ABA signaling as transcription factors together with OsVP1. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:307 / 313
页数:7
相关论文
共 26 条
[1]  
[Anonymous], 1989, Molecular Cloning
[2]   Regulation and role of the Arabidopsis Abscisic Acid-Insensitive 5 gene in abscisic acid, sugar, and stress response [J].
Brocard, IM ;
Lynch, TJ ;
Finkelstein, RR .
PLANT PHYSIOLOGY, 2002, 129 (04) :1533-1543
[3]   Regulation of Arabidopsis thaliana Em genes:: role of ABI5 [J].
Carles, C ;
Bies-Etheve, N ;
Aspart, L ;
Léon-Kloosterziel, KM ;
Koornneef, M ;
Echeverria, M ;
Delseny, M .
PLANT JOURNAL, 2002, 30 (03) :373-383
[4]   The transcription factors HvABI5 and HvVP1 are required for the abscisic acid induction of gene expression in barley aleurone cells [J].
Casaretto, J ;
Ho, THD .
PLANT CELL, 2003, 15 (01) :271-284
[5]   ABFs, a family of ABA-responsive element binding factors [J].
Choi, HI ;
Hong, JH ;
Ha, JO ;
Kang, JY ;
Kim, SY .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (03) :1723-1730
[6]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[7]   ABSCISIC ACID-INSENSITIVE MUTATIONS PROVIDE EVIDENCE FOR STAGE-SPECIFIC SIGNAL PATHWAYS REGULATING EXPRESSION OF AN ARABIDOPSIS LATE EMBRYOGENESIS-ABUNDANT (LEA) GENE [J].
FINKELSTEIN, RR .
MOLECULAR AND GENERAL GENETICS, 1993, 238 (03) :401-408
[8]  
Finkelstein RR, 1998, PLANT CELL, V10, P1043, DOI 10.1105/tpc.12.4.599
[9]   ABI5 interacts with abscisic acid signaling effectors in rice protoplasts [J].
Gampala, SSL ;
Finkelstein, RR ;
Sun, SSM ;
Rock, CD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (03) :1689-1694
[10]   A bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription [J].
Hobo, T ;
Kowyama, Y ;
Hattori, T .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (26) :15348-15353