Min-max control of constrained uncertain discrete-time linear systems

被引:352
作者
Bemporad, A
Borrelli, F
Morari, M
机构
[1] Univ Siena, Dipartimento Ingn Informaz, I-53100 Siena, Italy
[2] Automat Control Lab, CH-8092 Zurich, Switzerland
关键词
constraints; multiparametric programming; optimal control; receding horizon control (RHC); robustness;
D O I
10.1109/TAC.2003.816984
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For discrete-time uncertain linear systems with constraints on inputs and states, we develop an approach to determine state feedback controllers based on a min-max control formulation., Robustness is achieved against additive. norm-bounded input, disturbances. and/or polyhedral parametric uncertainties in the state-space matrices. We show that the finite-horizon robust optimal control law is a continuous piecewise affine function of the state vector and can be calculated by solving a sequence of multiparametric linear programs. When the optimal control law is implemented in a receding horizon scheme, only,a piecewise affine function needs to be evaluated on line at each time step. The technique computes the robust optimal feedback controller for a rather general class of systems with modest computational effort without needing to resort to gridding of the state-space.
引用
收藏
页码:1600 / 1606
页数:7
相关论文
共 30 条
[1]   ON LINEAR-PROGRAMMING AND ROBUST MODEL-PREDICTIVE CONTROL USING IMPULSE-RESPONSES [J].
ALLWRIGHT, JC ;
PAPAVASILIOU, GC .
SYSTEMS & CONTROL LETTERS, 1992, 18 (02) :159-164
[2]  
[Anonymous], 39 IEEE C DEC CONTR
[3]   The explicit linear quadratic regulator for constrained systems [J].
Bemporad, A ;
Morari, M ;
Dua, V ;
Pistikopoulos, EN .
AUTOMATICA, 2002, 38 (01) :3-20
[4]  
Bemporad A, 1999, LECT NOTES CONTR INF, V245, P207
[5]   Model predictive control based on linear programming - The explicit solution [J].
Bemporad, A ;
Borrelli, F ;
Morari, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (12) :1974-1985
[6]  
Bemporad A, 1998, IEEE DECIS CONTR P, P1384, DOI 10.1109/CDC.1998.758479
[7]  
BEMPORAD A, 2001, P EUR CONTR C PORT P
[8]   SUFFICIENTLY INFORMATIVE FUNCTIONS AND MINIMAX FEEDBACK CONTROL OF UNCERTAIN DYNAMIC-SYSTEMS [J].
BERTSEKAS, DP ;
RHODES, IB .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1973, AC18 (02) :117-123
[9]   Geometric algorithm for multiparametric linear programming [J].
Borrelli, F ;
Bemporad, A ;
Morari, M .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2003, 118 (03) :515-540
[10]  
BORRELLI F, 2001, 40 IEEE C DEC CONTR