A nonlinear multigrid for imaging electrical conductivity and permittivity at low frequency

被引:38
作者
Borcea, L [1 ]
机构
[1] Rice Univ, Houston, TX 77005 USA
关键词
D O I
10.1088/0266-5611/17/2/312
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a nonlinear multigrid approach for imaging the electrical conductivity and permittivity of a body Omega, given partial, usually noisy knowledge of the Neumann-to-Dirichlet map at the boundary. The algorithm is a nested iteration, where the image is constructed on a sequence of grids in Omega, starting from the coarsest grid and advancing towards the finest one. We show various numerical examples that demonstrate the effectiveness and robustness of the algorithm and prove local convergence.
引用
收藏
页码:329 / 359
页数:31
相关论文
共 48 条
[1]  
Adams R. A., 1975, SOBOLEV SPACES
[2]   STABILITY AND RESOLUTION ANALYSIS OF A LINEARIZED PROBLEM IN ELECTRICAL-IMPEDANCE TOMOGRAPHY [J].
ALLERS, A ;
SANTOSA, F .
INVERSE PROBLEMS, 1991, 7 (04) :515-533
[3]  
[Anonymous], 1980, MINPACK PROJECT
[4]  
[Anonymous], 1996, J ENVIRON ENG GEOPH, DOI DOI 10.4133/JEEG1.3.189
[5]   VARIATIONAL CONSTRAINTS FOR ELECTRICAL-IMPEDANCE TOMOGRAPHY [J].
BERRYMAN, JG ;
KOHN, RV .
PHYSICAL REVIEW LETTERS, 1990, 65 (03) :325-328
[6]  
BRANDT A, 1977, MATH COMPUT, V31, P333, DOI 10.1090/S0025-5718-1977-0431719-X
[7]  
BRANDT A, 1984, GESELLSCHAFT MATH DA
[8]  
Brenner S., 2008, The mathematical theory of finite element methods, V3rd ed., DOI DOI 10.1007/978-0-387-75934-0
[9]   Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions [J].
Brown, RM ;
Uhlmann, GA .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1997, 22 (5-6) :1009-1027
[10]  
Calderon A. P., 1980, SEMINAR NUMERICAL AN, P65