Calcium, thin filaments, and the integrative biology of cardiac contractility

被引:267
作者
Kobayashi, T [1 ]
Solaro, RJ [1 ]
机构
[1] Univ Illinois, Coll Med, Dept Physiol & Biophys, Chicago, IL 60612 USA
关键词
troponin I; troponin T; troponin C; tropomyosin; actin;
D O I
10.1146/annurev.physiol.67.040403.114025
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Although well known as the location of the mechanism by which the cardiac sarcomere is activated by Ca2+ to generate force and shortening, the thin filament is now also recognized as a vital component determining the dynamics of contraction and relaxation. Molecular signaling in the thin filament involves steric, allosteric, and cooperative mechanisms that are modified by protein phosphorylation, sarcomere length and load, the chemical environment, and isoform composition. Approaches employing transgenesis and mutagenesis now permit investigation of these processes at the level of the systems biology of the heart. These studies reveal that the thin filaments are not merely slaves to the levels of Ca2+ determined by membrane channels, transporters and exchangers, but are actively involved in beat to beat control of cardiac function by neural and hormonal factors and by the Frank-Starling mechanism.
引用
收藏
页码:39 / 67
页数:33
相关论文
共 158 条
[1]  
Anderson P., 2002, MOL CONTROL MECH STR, P329
[2]   Ca2+-induced movement of tropomyosin in skeletal muscle thin filaments observed by multi-site FRET [J].
Bacchiocchi, C ;
Lehrer, SS .
BIOPHYSICAL JOURNAL, 2002, 82 (03) :1524-1536
[3]   Troponin I and troponin T interact with troponin C to produce different Ca2+-dependent effects on actin-tropomyosin filament motility [J].
Bing, W ;
Fraser, IDC ;
Marston, SB .
BIOCHEMICAL JOURNAL, 1997, 327 :335-340
[4]   Mapping the interacting regions between troponins T and C - Binding of TnT and TnI peptides to TnC and NMR mapping of the TnT-binding site on TnC [J].
Blumenschein, TMA ;
Tripet, BP ;
Hodges, RS ;
Sykes, BD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (39) :36606-36612
[5]   COOPERATION WITHIN ACTIN FILAMENT IN VERTEBRATE SKELETAL-MUSCLE [J].
BREMEL, RD ;
WEBER, A .
NATURE-NEW BIOLOGY, 1972, 238 (82) :97-&
[6]   Kinetics of thin filament activation probed by fluorescence of N-((2-iodoacetoxy)ethyl)-N-methyl)amino-7-nitrobenz-2-oxa-1,3-diazole-labeled troponin I incorporated into skinned fibers of rabbit psoas muscle:: Implications for regulation of muscle contraction [J].
Brenner, B ;
Chalovich, JM .
BIOPHYSICAL JOURNAL, 1999, 77 (05) :2692-2708
[8]   Deciphering the design of the tropomyosin molecule [J].
Brown, JH ;
Kim, KH ;
Jun, G ;
Greenfield, NJ ;
Dominguez, R ;
Volkmann, N ;
Hitchcock-DeGregori, SE ;
Cohen, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (15) :8496-8501
[9]   Structure of the inhibitory region of troponin by site directed spin labeling electron paramagnetic resonance [J].
Brown, LJ ;
Sale, KL ;
Hills, R ;
Rouviere, C ;
Song, LK ;
Zhang, XJ ;
Fajer, PG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (20) :12765-12770
[10]   Phosphorylation or glutamic acid substitution at protein kinase C sites on cardiac troponin I differentially depress myofilament tension and shortening velocity [J].
Burkart, EM ;
Sumandea, MP ;
Kobayashi, T ;
Nili, M ;
Martin, AF ;
Homsher, E ;
Solaro, RJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (13) :11265-11272