Transformation invariance of Lyapunov exponents

被引:20
作者
Eichhorn, R [1 ]
Linz, SJ [1 ]
Hänggi, P [1 ]
机构
[1] Univ Augsburg, Inst Phys, D-86135 Augsburg, Germany
关键词
D O I
10.1016/S0960-0779(00)00120-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Lyapunov exponents represent important quantities to characterize the properties of dynamical systems. We show that the Lyapunov exponents of two different dynamical systems that can be converted to each other by a transformation of variables are identical. Moreover, we derive sufficient conditions on the transformation for this invariance properly to hold. In particular, it turns out that the transformation need not necessarily be globally invertible. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1377 / 1383
页数:7
相关论文
共 19 条
[1]  
[Anonymous], 1993, CHAOS DYNAMICAL SYST
[2]  
Argyris JH, 1994, EXPLORATION CHAOS
[3]  
AULBACH B, 1997, GEWOHNLICHE DIFFEREN
[4]   ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS [J].
ECKMANN, JP ;
RUELLE, D .
REVIEWS OF MODERN PHYSICS, 1985, 57 (03) :617-656
[5]   Transformations of nonlinear dynamical systems to jerky motion and its application to minimal chaotic flows [J].
Eichhorn, R ;
Linz, SJ ;
Hänggi, P .
PHYSICAL REVIEW E, 1998, 58 (06) :7151-7164
[6]   THE DIMENSION OF CHAOTIC ATTRACTORS [J].
FARMER, JD ;
OTT, E ;
YORKE, JA .
PHYSICA D-NONLINEAR PHENOMENA, 1983, 7 (1-3) :153-180
[7]   THE LIAPUNOV DIMENSION OF STRANGE ATTRACTORS [J].
FREDERICKSON, P ;
KAPLAN, JL ;
YORKE, ED ;
YORKE, JA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1983, 49 (02) :185-207
[8]  
Jackson EA, 1991, Perspectives of nonlinear dynamics, V1-2
[9]  
JACKSON EA, 1991, PERSPECTIVES NONLINE, V2
[10]  
Kaplan J., 1979, Lect. Notes Math., P204