Timeline - Metabolic engineering for drug discovery and development

被引:149
作者
Khosla, C [1 ]
Keasling, JD
机构
[1] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Biochem, Stanford, CA 94305 USA
[4] Univ Calif Berkeley, Lawrence Berkeley Lab, Synth Biol Dept, Phys Biosci Div, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
D O I
10.1038/nrd1256
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Metabolic engineering has been defined as the redirection of metabolic pathways using genetic manipulation. Since the emergence of metabolic engineering science in the early 1980s, the field has made notable strides not only at a conceptual level, but also with regard to translating these concepts into practical products and processes. Today, metabolic engineering plays an important role in the generation of fuels from renewable resources, the conversion of agricultural raw materials (for example, corn syrup) into bulk and specialty chemicals, and the discovery, development and scale-up of therapeutically useful products. This article focuses on recent advances in the last category. Specifically, we review the impact that converging developments in genetic engineering and biosynthetic chemistry are having on natural-product drug discovery.
引用
收藏
页码:1019 / 1025
页数:7
相关论文
共 85 条
[41]   The in vivo synthesis of plant sesquiterpenes by Escherichia coli [J].
Martin, VJJ ;
Yoshikuni, Y ;
Keasling, JD .
BIOTECHNOLOGY AND BIOENGINEERING, 2001, 75 (05) :497-503
[42]   CLONING AND EXPRESSION IN ESCHERICHIA-COLI OF THE GENE CODING FOR PHYTOENE SYNTHASE FROM THE CYANOBACTERIUM SYNECHOCYSTIS SP PCC6803 [J].
MARTINEZFEREZ, I ;
FERNANDEZGONZALEZ, B ;
SANDMANN, G ;
VIOQUE, A .
BIOCHIMICA ET BIOPHYSICA ACTA-GENE STRUCTURE AND EXPRESSION, 1994, 1218 (02) :145-152
[43]  
McCaskill D, 1997, Adv Biochem Eng Biotechnol, V55, P107
[44]   Some caveats for bioengineering terpenoid metabolism in plants [J].
McCaskill, D ;
Croteau, R .
TRENDS IN BIOTECHNOLOGY, 1998, 16 (08) :349-355
[45]   Multiple genetic modifications of the erythromycin polyketide synthase to produce a library of novel "unnatural" natural products [J].
McDaniel, R ;
Thamchaipenet, A ;
Gustafsson, C ;
Fu, H ;
Betlach, M ;
Betlach, M ;
Ashley, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (05) :1846-1851
[46]   TERPENOID METABOLISM [J].
MCGARVEY, DJ ;
CROTEAU, R .
PLANT CELL, 1995, 7 (07) :1015-1026
[47]   Improved erythromycin production in a genetically engineered industrial strain of Saccharopolyspora erythraea [J].
Minas, W ;
Brünker, P ;
Kallio, PT ;
Bailey, JE .
BIOTECHNOLOGY PROGRESS, 1998, 14 (04) :561-566
[48]   EXPRESSION OF A TOMATO CDNA CODING FOR PHYTOENE SYNTHASE IN ESCHERICHIA-COLI, PHYTOENE FORMATION IN-VIVO AND IN-VITRO, AND FUNCTIONAL-ANALYSIS OF THE VARIOUS TRUNCATED GENE-PRODUCTS [J].
MISAWA, N ;
TRUESDALE, MR ;
SANDMANN, G ;
FRASER, PD ;
BIRD, C ;
SCHUCH, W ;
BRAMLEY, PM .
JOURNAL OF BIOCHEMISTRY, 1994, 116 (05) :980-985
[49]  
Miura Y, 1998, APPL ENVIRON MICROB, V64, P1226
[50]  
Mootz HD, 2002, CHEMBIOCHEM, V3, P490, DOI 10.1002/1439-7633(20020603)3:6<490::AID-CBIC490>3.0.CO