Capacitors

被引:372
作者
Sarjeant, WJ [1 ]
Zirnheld, J
MacDougall, FW
机构
[1] High Power Elect Inst, Buffalo, NY 14260 USA
[2] Maxwell Energy Prod, San Diego, CA 92123 USA
关键词
capacitor; capacitor technology; electronics capacitors; energy storage;
D O I
10.1109/27.736020
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Over the last decade, significant increases in capacitor performance, especially in reliability and energy/power densities, have been achieved for energy discharge applications in plasma science and fusion research applications through a combination of advanced manufacturing techniques, new materials, and diagnostic methodologies to provide requisite life-cycle performance for high energy pulse applications. Recent innovations in analysis of aging are introduced for predicting component performance and fault tolerance, especially relevant for very high energy storage applications necessary for next generation simulators, electrically energized fusion research machines, and advanced high power electronics for commercial, industrial, and military applications. Included in this study will be developments in capacitor technologies for electronics filtering and resonant energy transfer applications, as well as multisecond energy reservoir applications for uninterruptible power sources and the like. Next generation power electronics, driven by advances in solid state switching technologies, will require reduced capacitor dissipation factor by 1/3 to 1/10 at the same cost, particularly for ac applications. In addition, higher power electronics will require robust high frequency mica capacitor technology for >300 degrees C operation, up to 5 kV. The increasing expansion of the motor drive and industrial switched mode power supply (SMPS) market will be driven in cost by the availability of electrolytic capacitors of 750-850 Vdc ratings, at 450 Vdc cost and size. New formation processes and electrolytes are anticipated to be needed to achieve these extended performance levels. At higher frequencies, advanced power electronics drives the need for lower equivalent series resistance (ESR) much less than 0.1% to 100 MHz, multimicrofarad value solid tantalum capacitors, having fail-safe surface mount configurations. Emerging power electronics applications in the millisecond and longer time are projected to have a broad application need for electrochemical chemical double layer capacitors, especially for compact sizes as this technology has the potential of achieving energy densities of many 20 kJ/kg for discharge times of tens of seconds. The prismatic power conditioning system, designed to be compliant with the available volume and surfaces into which it is to be placed, is described in some detail. It permits flexibility for the design engineer to optimize the design without having to allocate a specific space for the power conditioning system or subcomponents. Such prismatic geometry power and power conditioning systems are becoming commercially feasible in the low power consumer and industrial regime because of dramatic advances in multichip module switching, energy storage, and planarized interconnections. This work builds on assessing the applicability of these technologies to the megawatt-class average power, power electronics regime. Higher power density prismatic power electronics enables a broad range of applications in the commercial arena in areas such as motor drives, inverters, power quality systems, and mobile power systems.
引用
收藏
页码:1368 / 1392
页数:25
相关论文
共 74 条
[1]  
*AIR FORC WEAP LAB, 1973, AFWLTR73167
[2]  
ALSTON LL, 1968, HV TECHNOLOGY
[3]  
[Anonymous], P 9 IEEE INT PULS PO
[4]  
[Anonymous], 1990, P IEEE POW EL C LONG
[5]  
BALL DG, 1976, P 1976 IEEE POW MOD, P156
[6]  
BARNETT B, 1993, P INT SEM DOUBL LAYE
[7]  
BOEZER GL, 1994, D1532 I DEF AN
[8]  
BOICOURT G, 1970, LA4142MS LOS AL SCI
[9]  
BOICOURT GP, 1975, LAUR752128 LOS AL SC
[10]  
BURKES TR, 1978, NP3078 NAV SURF WEAP