The approximation of a morphological opening and closing in the presence of noise

被引:11
作者
Van Horebeek, J [1 ]
Tapia-Rodriguez, E [1 ]
机构
[1] Ctr Invest Matemat, Guanajuato 36000, Mexico
关键词
openings; closings; mathematical morphology; alternating rank; filters;
D O I
10.1016/S0165-1684(01)00060-3
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Morphological openings and closings form the cornerstones of a rich set of nonlinear operators in signal processing. In this paper. we show how a new morphological operator can be constructed that serves as an approximation to openings and closings for images corrupted by low levels of noise. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1991 / 1995
页数:5
相关论文
共 10 条
[1]  
[Anonymous], 1988, IMAGE ANAL MATH MORP
[2]  
Astola J., 1997, Fundamentals of Nonlinear Digital Filtering, DOI DOI 10.1201/9781003067832
[3]   OPTIMAL MEAN-SQUARE N-OBSERVATION DIGITAL MORPHOLOGICAL FILTERS .1. OPTIMAL BINARY FILTERS [J].
DOUGHERTY, ER .
CVGIP-IMAGE UNDERSTANDING, 1992, 55 (01) :36-54
[4]  
Heijmans HJAM., 1994, MORPHOLOGICAL IMAGE
[5]  
Pappas M, 1996, COMP IMAG VIS, P187
[6]  
REGAZZONI CS, 1994, P ICASSP 94, P77
[7]   OPTIMAL MORPHOLOGICAL PATTERN RESTORATION FROM NOISY BINARY IMAGES [J].
SCHONFELD, D ;
GOUTSIAS, J .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1991, 13 (01) :14-29
[8]  
Serra J, 1982, IMAGE ANAL MATH MORP, V1
[9]  
TAPIA E, 1999, 20 CIMAT
[10]  
YUILLE A, 1992, J MATH IMAGING VIS, V3, P223