Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development

被引:318
作者
Poinern, Gerrard Eddy Jai [1 ]
Ali, Nurshahidah [1 ]
Fawcett, Derek [1 ]
机构
[1] Murdoch Univ, Sch Engn & Energy, Fac Minerals & Energy, Murdoch Appl Nanotechnol Res Grp, Murdoch, WA 6150, Australia
基金
比尔及梅琳达.盖茨基金会;
关键词
anodic aluminum oxide; nanotechnology; nano-materials; nano-devices; tissue engineering; POROUS ALUMINA; CARBON NANOTUBES; CYCLIC VOLTAMMETRY; PORE DIAMETER; BARRIER-LAYER; AG NANOWIRES; FILMS; FABRICATION; GROWTH; ARRAYS;
D O I
10.3390/ma4030487
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The anodization of aluminum is an electro-chemical process that changes the surface chemistry of the metal, via oxidation, to produce an anodic oxide layer. During this process a self organized, highly ordered array of cylindrical shaped pores can be produced with controllable pore diameters, periodicity and density distribution. This enables anodic aluminum oxide (AAO) membranes to be used as templates in a variety of nanotechnology applications without the need for expensive lithographical techniques. This review article is an overview of the current state of research on AAO membranes and the various applications of nanotechnology that use them in the manufacture of nano-materials and devices or incorporate them into specific applications such as biological/chemical sensors, nano-electronic devices, filter membranes and medical scaffolds for tissue engineering.
引用
收藏
页码:487 / 526
页数:40
相关论文
共 163 条
[1]  
Alwitt R.S., 2002, ANODIZING
[2]   Honeycomb arrays of carbon nanotubes in alumina templates for field emission based devices and electron sources [J].
Angelucci, R. ;
Boscolo, I. ;
Ciorba, A. ;
Cuffiani, M. ;
Malferrari, L. ;
Montanari, A. ;
Odorici, F. ;
Orlanducci, S. ;
Rizzoli, R. ;
Rossi, M. ;
Sessa, V. ;
Terranova, M. L. ;
Veronese, G. P. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2010, 42 (05) :1469-1476
[3]  
[Anonymous], TECHNOLOGY ANODISING
[4]   Growth of anodic porous alumina with square cells [J].
Asoh, H ;
Ono, S ;
Hirose, T ;
Nakao, M ;
Masuda, H .
ELECTROCHIMICA ACTA, 2003, 48 (20-22) :3171-3174
[5]   Conditions for fabrication of ideally ordered anodic porous alumina using pretextured Al [J].
Asoh, H ;
Nishio, K ;
Nakao, M ;
Tamamura, T ;
Masuda, H .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (04) :B152-B156
[6]   Pore diameter control of anodic aluminum oxide with ordered array of nanopores [J].
Bai, Allen ;
Hu, Chi-Chang ;
Yang, Yong-Feng ;
Lin, Chi-Cheng .
ELECTROCHIMICA ACTA, 2008, 53 (05) :2258-2264
[7]   Effect of processing parameters on pore structure and thickness of anodic aluminum oxide (AAO) tubular membranes [J].
Belwalkar, A. ;
Grasing, E. ;
Van Geertruyden, W. ;
Huang, Z. ;
Misiolek, W. Z. .
JOURNAL OF MEMBRANE SCIENCE, 2008, 319 (1-2) :192-198
[8]   Structural and thermal characterisation of nanostructured alumina templates [J].
Brown, I. W. M. ;
Bowden, M. E. ;
Kernmitt, T. ;
MacKenzie, K. J. D. .
CURRENT APPLIED PHYSICS, 2006, 6 (03) :557-561
[9]   Nonlithographic SiO2 nanodot arrays via template synthesis approach [J].
Cha, YK ;
Seo, D ;
Yoo, IK ;
Park, S ;
Jeong, SH ;
Chung, CW .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2004, 43 (8A) :5657-5659
[10]   α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications [J].
Chen, J ;
Xu, LN ;
Li, WY ;
Gou, XL .
ADVANCED MATERIALS, 2005, 17 (05) :582-+