Making classical and quantum canonical general relativity computable through a power series expansion in the inverse cosmological constant

被引:11
作者
Gambini, R
Pullin, J
机构
[1] Inst Fis, Fac Ciencias, Montevideo, Uruguay
[2] Penn State Univ, Dept Phys, Ctr Gravitat Phys & Geometry, Davey Lab 104, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.85.5272
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider general relativity with a cosmological constant as a perturbative expansion around a completely solvable diffeomorphism invariant held theory. This theory is the Lambda --> infinity limit of general relativity. This allows an explicit perturbative computational setup in which the quantum states of the theory and the classical observables can be explicitly computed. An unexpected relationship arises at a quantum level between the discrete spectrum of the volume operator and the allowed values of the cosmological constant.
引用
收藏
页码:5272 / 5275
页数:4
相关论文
共 27 条
[1]   2ND QUANTIZATION OF THE ANTISYMMETRIC POTENTIAL IN THE SPACE OF ABELIAN SURFACES [J].
ARIAS, PJ ;
DIBARTOLO, C ;
FUSTERO, X ;
GAMBINI, R ;
TRIAS, A .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1992, 7 (04) :737-753
[2]   DIFFERENTIAL GEOMETRY ON THE SPACE OF CONNECTIONS VIA GRAPHS AND PROJECTIVE-LIMITS [J].
ASHTEKAR, A ;
LEWANDOWSKI, J .
JOURNAL OF GEOMETRY AND PHYSICS, 1995, 17 (03) :191-230
[3]   PROJECTIVE TECHNIQUES AND FUNCTIONAL-INTEGRATION FOR GAUGE-THEORIES [J].
ASHTEKAR, A ;
LEWANDOWSKI, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (05) :2170-2191
[4]  
ASHTEKAR A, 1990, ANN ISR PHY, V9, P65
[5]  
Ashtekar A., 1998, Adv. Theor. Math. Phys, V1, P388, DOI DOI 10.4310/ATMP.1997.V1.N2.A8
[6]   QUANTUM THEORY OF GRAVITY .I. CANONICAL THEORY [J].
DEWITT, BS .
PHYSICAL REVIEW, 1967, 160 (05) :1113-&
[7]   Consistent canonical quantization of general relativity in the space of Vassiliev invariants [J].
Di Bartolo, C ;
Gambini, R ;
Griego, J ;
Pullin, J .
PHYSICAL REVIEW LETTERS, 2000, 84 (11) :2314-2317
[8]  
Di Bartolo C, 2000, CLASSICAL QUANT GRAV, V17, P3211, DOI 10.1088/0264-9381/17/16/309
[9]  
Di Bartolo C, 2000, CLASSICAL QUANT GRAV, V17, P3239, DOI 10.1088/0264-9381/17/16/310
[10]   The large cosmological constant approximation to classical and quantum gravity: model examples [J].
Gambini, R ;
Pullin, J .
CLASSICAL AND QUANTUM GRAVITY, 2000, 17 (21) :4515-4539