Crystal structure of IscS, a cysteine desulfurase from Escherichia coli

被引:145
作者
Cupp-Vickery, JR [1 ]
Urbina, H [1 ]
Vickery, LE [1 ]
机构
[1] Univ Calif Irvine, Dept Physiol & Biophys, Irvine, CA 92697 USA
关键词
IscS; NifS; cysteine desulfurase; crystal structure; pyridoxal phosphate;
D O I
10.1016/S0022-2836(03)00690-9
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
IscS is a widely distributed cysteine desulfurase that catalyzes the pyridoxal phosphate-dependent desulfuration Of L-cysteine and plays a central role in the delivery of sulfur to a variety of metabolic pathways. We report the crystal structure of Escherichia coli IscS to a resolution of 2.1 Angstrom. The crystals belong to the space group P2(1)2(1)2(1) and have unit cell dimensions a = 73.70 Angstrom, b = 101.97 Angstrom, c = 108.62 Angstrom (alpha = beta = gamma = 90degrees). Molecular replacement with the Thermotoga maritima NifS model was used to determine phasing, and the IscS model was refined to an R = 20.6% (R-free = 23.6%) with two molecules per asymmetric unit. The structure of E. coli IscS is similar to that of T maritima NifS with nearly identical secondary structure and an overall backbone r.m.s. difference of 1.4 Angstrom. However, in contrast to NifS a peptide segment containing the catalytic cysteine residue (Cys328) is partially ordered in the IscS structure. This segment of IscS (residues 323-335) forms a surface loop directed away from the active site pocket. Cys328 is positioned greater than 17 Angstrom from the pyridoxal phosphate cofactor, suggesting that a large conformational change must occur during catalysis in order for Cys328 to participate in nucleophilic attack of a pyridoxal phosphate-bound cysteine substrate. Modeling suggests that rotation of this loop may allow movement of Cys328 to within similar to3 Angstrom of the pyridoxal phosphate cofactor. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1049 / 1059
页数:11
相关论文
共 44 条
  • [1] Role of the IscU protein in iron-sulfur cluster biosynthesis:: IscS-mediated assembly of a [Fe2S2] cluster in IscU
    Agar, JN
    Zheng, LM
    Cash, VL
    Dean, DR
    Johnson, MK
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (09) : 2136 - 2137
  • [2] THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY
    BAILEY, S
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 : 760 - 763
  • [3] Iron-sulfur proteins: ancient structures, still full of surprises
    Beinert, H
    [J]. JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, 2000, 5 (01): : 2 - 15
  • [4] Iron-sulfur clusters: Nature's modular, multipurpose structures
    Beinert, H
    Holm, RH
    Munck, E
    [J]. SCIENCE, 1997, 277 (5326) : 653 - 659
  • [5] Crystallography & NMR system:: A new software suite for macromolecular structure determination
    Brunger, AT
    Adams, PD
    Clore, GM
    DeLano, WL
    Gros, P
    Grosse-Kunstleve, RW
    Jiang, JS
    Kuszewski, J
    Nilges, M
    Pannu, NS
    Read, RJ
    Rice, LM
    Simonson, T
    Warren, GL
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 : 905 - 921
  • [6] Bui BTS, 2000, EUR J BIOCHEM, V267, P2688
  • [7] Role of NifS in maturation of glutamine phosphoribosylpyrophosphhate amidotransferase
    Chen, SH
    Zheng, LM
    Dean, DR
    Zalkin, H
    [J]. JOURNAL OF BACTERIOLOGY, 1997, 179 (23) : 7587 - 7590
  • [8] SETOR - HARDWARE-LIGHTED 3-DIMENSIONAL SOLID MODEL REPRESENTATIONS OF MACROMOLECULES
    EVANS, SV
    [J]. JOURNAL OF MOLECULAR GRAPHICS, 1993, 11 (02): : 134 - &
  • [9] Flint DH, 1996, J BIOL CHEM, V271, P16068
  • [10] Structure of a NifS homologue:: X-ray structure analysis of CsdB, an Escherichia coli counterpart of mammalian selenocysteine lyase
    Fujii, T
    Maeda, M
    Mihara, H
    Kurihara, T
    Esaki, N
    Hata, Y
    [J]. BIOCHEMISTRY, 2000, 39 (06) : 1263 - 1273