Crystal structure of Streptococcus pneumoniae N-acetyl-glucosamine-1-phosphate uridyltransferase bound to acetyl-coenzyme A reveals a novel active site architecture

被引:86
作者
Sulzenbacher, G
Gal, L
Peneff, C
Fassy, F
Bourne, Y
机构
[1] AFMB, UMR6098, F-13402 Marseille 20, France
[2] Aventis Pharma Hoechst Marion Roussel, Infect Dis Grp, F-93235 Romainville, France
关键词
D O I
10.1074/jbc.M011225200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The bifunctional bacterial enzyme N-acetyl-glucosamine-1-phosphate uridyltransferase (GLmU) catalyzes the two-step formation of UDP-GlcNAc, a fundamental precursor in bacterial cell wall biosynthesis. With the emergence of new resistance mechanisms against beta -lactam and glycopeptide antibiotics, the biosynthetic pathway of UDP-GlcNAc represents an attractive target for drug design of new antibacterial agents. The crystal structures of Streptococcus pneumoniae GlmU in unbound form, in complex with acetyl-coenzyme A (AcCoA) and in complex with both AcCoA and the end product UDP-GlcNAc, have been determined and refined to 2.3, 2.5, and 1.75 Angstrom, respectively. The S. pneumoniae GlmU molecule is organized in two separate domains connected via a long cu-helical linker and associates as a trimer, with the 50-Angstrom -long left-handed beta -helix (LPH) C-terminal domains packed against each other in a parallel fashion and the C-terminal region extended far away from the LPH core and exchanged with the beta -helix from a neighboring subunit in the trimer, AcCoA binding induces the formation of a long and narrow tunnel, enclosed between two adjacent LPH domains and the interchanged C-terminal region of the third subunit, giving rise to an original active site architecture at the junction of three subunits.
引用
收藏
页码:11844 / 11851
页数:8
相关论文
共 28 条
[1]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[2]   ALSCRIPT - A TOOL TO FORMAT MULTIPLE SEQUENCE ALIGNMENTS [J].
BARTON, GJ .
PROTEIN ENGINEERING, 1993, 6 (01) :37-40
[3]   Structure of the hexapeptide xenobiotic acetyltransferase from Pseudomonas aeruginosa [J].
Beaman, TW ;
Sugantino, M ;
Roderick, SL .
BIOCHEMISTRY, 1998, 37 (19) :6689-6696
[4]   The conformational change and active site structure of tetrahydrodipicolinate N-succinyltransferase [J].
Beaman, TW ;
Blanchard, JS ;
Roderick, SL .
BIOCHEMISTRY, 1998, 37 (29) :10363-10369
[5]   Crystal structure of the bifunctional N-acetylglucosamine 1-phosphate uridyltransferase from Escherichia coli:: a paradigm for the related pyrophosphorylase superfamily [J].
Brown, K ;
Pompeo, F ;
Dixon, S ;
Mengin-Lecreulx, D ;
Cambillau, C ;
Bourne, Y .
EMBO JOURNAL, 1999, 18 (15) :4096-4107
[6]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[7]  
CHEON HG, 1992, BIOCHEM PHARMACOL, V43, P2255
[8]  
CHRISTOPHER JA, 1998, SPOCK
[9]  
Cowtan K., 1994, JOINT CCP4 ESF EACBM, V31, P34
[10]   Kinetic analysis of the catalytic mechanism of serotonin N-acetyltransferase (EC 2.3.1.87) [J].
De Angelis, J ;
Gastel, J ;
Klein, DC ;
Cole, PA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (05) :3045-3050