Metal selectivity in metalloproteins:: Zn2+ vs Mg2+

被引:68
作者
Dudev, T [1 ]
Lim, C
机构
[1] Acad Sinica, Inst Biomed Sci, Taipei 11529, Taiwan
[2] Natl Tsing Hua Univ, Dept Chem, Hsinchu 300, Taiwan
关键词
D O I
10.1021/jp004602g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To elucidate the factors governing metal cation selectivity by proteins, density functional theory (DFT) and continuum dielectric methods (CDM) were used to evaluate the free energy of metal exchange in model binding sites. We studied Mg2+<----> Zn2+ exchange in rigid sites, where the incoming metal retains the coordination geometry of the outgoing metal, as well as inflexible sites that can accommodate some reorganization of the protein Ligands upon metal substitution. The results predict that Zn2+ can dislodge Mg2+ from its octahedral binding site. On the other hand, Mg2+ cannot displace Zn2+ from its tetrahedral binding site, unless a nearby negatively charged side chain can coordinate directly to Mg2+ in an octahedral geometry. The combination of available experimental data with our results suggest that some proteins may have chosen Mg2+ as a natural cofactor due mainly to its natural abundance in living cells. In such cases, it is not the protein that has evolved to select Mg2+ from Other cations; instead, it is the cell machinery, which governs metal selectivity by regulating appropriate concentrations of Mg2+ and other cations (Zn2+ in particular) in various biological compartments. in contrast, Zn2+-binding sites appear to be more selective than Mg2+-binding sites. Hence,. the protein can select Zn2+ against the background of a higher Mg2+ concentration.
引用
收藏
页码:4446 / 4452
页数:7
相关论文
共 46 条
[1]   Regulation of cellular Mg2+ by Saccharomyces cerevisiae [J].
Beeler, T ;
Bruce, K ;
Dunn, T .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 1997, 1323 (02) :310-318
[2]   Lessons from zinc-binding peptides [J].
Berg, JM ;
Godwin, HA .
ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 1997, 26 :357-371
[3]   Manganese as a replacement for magnesium and zinc: Functional comparison of the divalent ions [J].
Bock, CW ;
Katz, AK ;
Markham, GD ;
Glusker, JP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (32) :7360-7372
[4]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[5]   WHAT FACTORS DETERMINE CATION COORDINATION NUMBERS [J].
BROWN, ID .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 1988, 44 :545-553
[6]  
BURGESS MA, 1978, METAL IONS SOLUTION
[7]   Model for aqueous solvation based on class IV atomic charges and first solvation shell effects [J].
Chambers, CC ;
Hawkins, GD ;
Cramer, CJ ;
Truhlar, DG .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (40) :16385-16398
[8]   CARBOXYLATE HISTIDINE ZINC INTERACTIONS IN PROTEIN-STRUCTURE AND FUNCTION [J].
CHRISTIANSON, DW ;
ALEXANDER, RS .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1989, 111 (16) :6412-6419
[9]  
CIANCAGLINI P, 1990, INT J BIOCHEM, V22, P747
[10]   ZINC PROTEINS - ENZYMES, STORAGE PROTEINS, TRANSCRIPTION FACTORS, AND REPLICATION PROTEINS [J].
COLEMAN, JE .
ANNUAL REVIEW OF BIOCHEMISTRY, 1992, 61 :897-946