Code dependencies of pre-supernova evolution and nucleosynthesis in massive stars: evolution to the end of core helium burning

被引:40
作者
Jones, S. [1 ,2 ]
Hirschi, R. [2 ,3 ]
Pignatari, M. [4 ]
Heger, A. [5 ,6 ,7 ]
Georgy, C. [2 ]
Nishimura, N. [2 ]
Fryer, C. [8 ]
Herwig, F. [1 ,7 ]
机构
[1] Univ Victoria, Dept Phys & Astron, Victoria, BC V8W 3P6, Canada
[2] Keele Univ, Astrophys Grp, Keele ST5 5BG, Staffs, England
[3] Univ Tokyo, Kavli Inst Phys & Math Universe WPI, Kashiwa, Chiba 2778583, Japan
[4] Univ Basel, Dept Phys, CH-4056 Basel, Switzerland
[5] Monash Univ, Sch Math Sci, Monash Ctr Astrophys, Clayton, Vic 3800, Australia
[6] Univ Minnesota, Sch Phys & Astron, Minnesota Inst Astrophys, Minneapolis, MN 55455 USA
[7] Univ Notre Dame, Joint Inst Nucl Astrophys, Notre Dame, IN 46556 USA
[8] Los Alamos Natl Lab, Computat Phys & Methods CCS 2, Los Alamos, NM 87545 USA
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
stars: abundances; stars: evolution; stars: interiors; stars: massive; supernovae: general; galaxies: abundances; S-PROCESS NUCLEOSYNTHESIS; M-CIRCLE-DOT; EQUATION-OF-STATE; THERMONUCLEAR REACTION-RATES; NEUTRINO-DRIVEN SUPERNOVAE; STELLAR ASTROPHYSICS MESA; X-RAY-BURSTS; COLLAPSE SUPERNOVAE; PRESUPERNOVA EVOLUTION; COMPTON-SCATTERING;
D O I
10.1093/mnras/stu2657
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Massive stars are key sources of radiative, kinetic and chemical feedback in theUniverse. Grids of massive star models computed by different groups each using their own codes, input physics choices and numerical approximations, however, lead to inconsistent results for the same stars. We use three of these 1D codes - GENEC, KEPLER and MESA - to compute non-rotating stellar models of 15, 20 and 25M(circle dot) and compare their nucleosynthesis. We follow the evolution from the main sequence until the end of core helium burning. The GENEC and KEPLER models hold physics assumptions used in large grids of published models. The MESA code was set up to use convective core overshooting such that the CO core masses are consistent with those obtained by GENEC. For all models, full nucleosynthesis is computed using the NuGrid post-processing tool MPPNP. We find that the surface abundances predicted by the models are in reasonable agreement. In the helium core, the standard deviation of the elemental overproduction factors for Fe to Mo is less than 30 per cent - smaller than the impact of the present nuclear physics uncertainties. For our three initial masses, the three stellar evolution codes yield consistent results. Differences in key properties of the models, e.g. helium and CO core masses and the time spent as a red supergiant, are traced back to the treatment of convection and, to a lesser extent, mass loss. The mixing processes in stars remain the key uncertainty in stellar modelling. Better constrained prescriptions are thus necessary to improve the predictive power of stellar evolution models.
引用
收藏
页码:3115 / 3129
页数:15
相关论文
共 106 条
[1]   LOW-TEMPERATURE ROSSELAND OPACITIES [J].
ALEXANDER, DR ;
FERGUSON, JW .
ASTROPHYSICAL JOURNAL, 1994, 437 (02) :879-891
[2]   A compilation of charged-particle induced thermonuclear reaction rates [J].
Angulo, C ;
Arnould, M ;
Rayet, M ;
Descouvemont, P ;
Baye, D ;
Leclercq-Willain, C ;
Coc, A ;
Barhoumi, S ;
Aguer, P ;
Rolfs, C ;
Kunz, R ;
Hammer, JW ;
Mayer, A ;
Paradellis, T ;
Kossionides, S ;
Chronidou, C ;
Spyrou, K ;
Degl'Innocenti, S ;
Fiorentini, G ;
Ricci, B ;
Zavatarelli, S ;
Providencia, C ;
Wolters, H ;
Soares, J ;
Grama, C ;
Rahighi, J ;
Shotter, A ;
Rachti, ML .
NUCLEAR PHYSICS A, 1999, 656 (01) :3-183
[3]   PRODUCTION OF LIGHT-ELEMENT PRIMARY PROCESS NUCLEI IN NEUTRINO-DRIVEN WINDS [J].
Arcones, A. ;
Montes, F. .
ASTROPHYSICAL JOURNAL, 2011, 731 (01)
[4]   The p-process of stellar nucleosynthesis: astrophysics and nuclear physics status [J].
Arnould, A ;
Goriely, S .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2003, 384 (1-2) :1-84
[5]   The Chemical Composition of the Sun [J].
Asplund, Martin ;
Grevesse, Nicolas ;
Sauval, A. Jacques ;
Scott, Pat .
ANNUAL REVIEW OF ASTRONOMY AND ASTROPHYSICS, VOL 47, 2009, 47 :481-522
[6]   The effect of 12C+12C rate uncertainties on the evolution and nucleosynthesis of massive stars [J].
Bennett, M. E. ;
Hirschi, R. ;
Pignatari, M. ;
Diehl, S. ;
Fryer, C. ;
Herwig, F. ;
Hungerford, A. ;
Nomoto, K. ;
Rockefeller, G. ;
Timmes, F. X. ;
Wiescher, M. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 420 (04) :3047-3070
[7]   Equation of state of a Fermi gas: Approximations for various degrees of relativism and degeneracy (vol 106, pg 171, 1996) [J].
Blinnikov, SI ;
Dunina-Barkovskaya, NV ;
Nadyozhin, DK .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 1998, 118 (02) :603-603
[8]   Equation of state of a Fermi gas: Approximations for various degrees of relativism and degeneracy [J].
Blinnikov, SI ;
DuninaBarkovskaya, NV ;
Nadyozhin, DK .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 1996, 106 (01) :171-203
[9]   Rotating massive main-sequence stars I. Grids of evolutionary models and isochrones [J].
Brott, I. ;
de Mink, S. E. ;
Cantiello, M. ;
Langer, N. ;
de Koter, A. ;
Evans, C. J. ;
Hunter, I. ;
Trundle, C. ;
Vink, J. S. .
ASTRONOMY & ASTROPHYSICS, 2011, 530
[10]   NUCLEOSYNTHETIC CONSTRAINTS ON THE MASS OF THE HEAVIEST SUPERNOVAE [J].
Brown, Justin M. ;
Woosley, S. E. .
ASTROPHYSICAL JOURNAL, 2013, 769 (02)