Gas exchange and growth responses of the desert shrubs Artemisia tridentata and Chrysothamnus nauseosus to shallow- vs. deep-soil water in a glasshouse experiment

被引:31
作者
Leffler, AJ
Ivans, CY
Ryel, RJ
Caldwell, MM
机构
[1] Utah State Univ, Dept Forest Range & Wildlife Sci, Logan, UT 84322 USA
[2] Utah State Univ, Ctr Ecol, Logan, UT 84322 USA
基金
美国国家科学基金会;
关键词
carbon isotope composition; gas exchange; growth; nitrogen acquisition; soil water distribution; water use;
D O I
10.1016/S0098-8472(03)00041-8
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The aridland shrub species, Artemisia tridentata (big sagebrush) and Chrysothamnus nauseosus (rubber rabbitbrush), are distributed widely in the Intermountain region of western North America. Earlier research indicated that A. tridentata can utilize upper soil water from transient summer rain events while C. nauseosus apparently cannot, although both species have similar rooting depths. Thus, we hypothesized that C nauseosus relies more on deep water than A. tridentata, while A. tridentata can take advantage of soil moisture in upper soil layers. We examined this hypothesis by growing A. tridentata and C. nauseosus in two-layer pots in which soil water content in the upper and lower layers was controlled independently. After plants were well established, they were subjected to one of the three water treatments: water applied both to upper and lower layers, water applied only to the upper layer, or water applied only to the lower layer. We measured above- and belowground biomass, leaf gas exchange and leaf carbon isotope composition (delta(13)C). Close to the end of the experiment, a deuterium- and N-15-labeled solution was applied in a localized patch in either the upper or lower soil layer to quantify resource-pulse utilization. In general, our hypothesis was supported; delta(13)C and biomass indicated that A. tridentata performed better when water was available in the upper soil layer and gas exchange, and delta(13)C indicated that C nauseosus performed better when water was available in the lower layer. There was, however, no significant variation among treatments for many of the variables examined. Roots of both species were involved in hydraulic redistribution of soil water between layers, which may have reduced the effectiveness of the water distribution treatments to some extent. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:9 / 19
页数:11
相关论文
共 47 条