Decreased p21 levels are required for efficient restart of DNA synthesis after S phase block

被引:65
作者
Gottifredi, V [1 ]
McKinney, K [1 ]
Poyurovsky, MV [1 ]
Prives, C [1 ]
机构
[1] Columbia Univ, Dept Biol Sci, New York, NY 10027 USA
关键词
D O I
10.1074/jbc.M310373200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The cyclin-dependent kinase inhibitor p21, a major transcriptional target of the tumor suppressor p53, plays a critical role in cell cycle arrest in G(1) and G(2) after DNA damage. It was previously shown that in some human cell lines when S phase is arrested, p53 is transcriptionally impaired such that some p53 targets including p21 are only weakly induced. We show here that during S phase arrest proteasome-mediated turnover of p21 is significantly increased in a manner that is independent of p53. It is well established that p21 can interact both with cyclin-dependent kinase complexes and with proliferating cell nuclear antigen ( PCNA). Interestingly, the scant amount of p21 detected during S phase block cannot fully saturate cyclin A-cyclin-dependent kinase 2 complexes and does not interact detectably with PCNA. Importantly, DNA elongation assays in isolated nuclei show that the C terminus of p21 containing the PCNA-binding domain effectively blocks this process. This implies that p21 down-regulation could be an essential requirement for efficient restart of DNA synthesis. In line with this, only cells expressing low levels of p21 immediately progress through the cell cycle upon release from S phase arrest, whereas the remaining few high p21 producing cells move much more slowly through S. Thus, p21 down-regulation is multiply determined and is required for the reversibility of the arrest in S phase.
引用
收藏
页码:5802 / 5810
页数:9
相关论文
共 54 条
[1]  
Adams PD, 1996, MOL CELL BIOL, V16, P6623
[2]   Stress signals utilize multiple pathways to stabilize p53 [J].
Ashcroft, M ;
Taya, Y ;
Vousden, KH .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (09) :3224-3233
[3]   Regulation of p53 stability [J].
Ashcroft, M ;
Vousden, KH .
ONCOGENE, 1999, 18 (53) :7637-7643
[4]   Cell-cycle arrest and inhibition of Cdk4 activity by small peptides based on the carboxy-terminal domain of p21(WAF1) [J].
Ball, KL ;
Lain, S ;
Fahraeus, R ;
Smythe, C ;
Lane, DP .
CURRENT BIOLOGY, 1997, 7 (01) :71-80
[5]   The proline-rich domain of p53 is required for cooperation with anti-neoplastic agents to promote apoptosis of tumor cells [J].
Baptiste, N ;
Friedlander, P ;
Chen, XB ;
Prives, C .
ONCOGENE, 2002, 21 (01) :9-21
[6]  
Bendjennat M, 2003, CELL, V114, P599, DOI 10.1016/j.cell.2003.08.001
[7]   Regulation of BRCA1 by protein degradation [J].
Blagosklonny, MV ;
An, WG ;
Melillo, G ;
Nguyen, P ;
Trepel, JB ;
Neckers, LM .
ONCOGENE, 1999, 18 (47) :6460-6468
[8]   Proteasome-dependent regulation of p21(WAF1/CIP1) expression [J].
Blagosklonny, MV ;
Wu, GS ;
Omura, S ;
ElDeiry, WS .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1996, 227 (02) :564-569
[9]   Proteasome-mediated degradation of p21 via N-terminal ubiquitinylation [J].
Bloom, J ;
Amador, V ;
Bartolini, F ;
DeMartino, G ;
Pagano, M .
CELL, 2003, 115 (01) :71-82
[10]  
Borel F, 2002, J CELL SCI, V115, P2829