Thermodynamic aspects of energy conservation by chemolithotrophic sulfur bacteria in relation to the sulfur oxidation pathways

被引:103
作者
Kelly, DP [1 ]
机构
[1] Univ Warwick, Dept Biol Sci, Coventry CV4 7AL, W Midlands, England
关键词
chemolithotrophic sulfur oxidation; sulfur oxygenase; energy conservation; thermodynamics; growth yields; Thiobacillus; Archaea;
D O I
10.1007/s002030050703
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The free-energy data on which assessments of the autotrophic growth efficiencies of chemolithotrophic bacteria are commonly based have been reevaluated and new values have been calculated. It has been concluded that many earlier calculations are in error and that many values previously reported in the literature are overestimates of efficiency. A problem posed by the chemolithotrophic sulfur-oxidizing bacteria is the elucidation of the mechanism by which elemental sulfur and the sulfane-sulfur (-S-) of the thionic acids are converted to sulfite. Even after decades of studies on sulfur oxidation by these bacteria, this problem has not been fully resolved although it is widely thought that conversion of sulfur to sulfite is brought about by an oxygenase. The biochemically feasible mechanisms by which sulfur and "sulfane" oxidation to sulfite might occur are reviewed. The possible insight afforded by chemical thermodynamics into the most likely mechanisms for oxidation to sulfate in relation to the efficiency of energy conservation is discussed. Energetic calculations and growth yield data indicate that the energy-yielding oxidation of sulfur and "sulfane" to sulfire, either coupled to energy-conserving electron transport or catalyzed by an oxygenase, could explain divergent growth yields among different sulfur-chemolithotrophs.
引用
收藏
页码:219 / 229
页数:11
相关论文
共 52 条
[1]  
[Anonymous], BACTERIAL ENERGETICS
[2]  
[Anonymous], 1985, STANDARD POTENTIALS
[3]  
[Anonymous], 1931, ARCH MIKROBIOL
[4]  
BECKING LGM, 1927, PHYSIOL REV, V7, P85
[5]   INHIBITION OF RESPIRATORY OXIDATION OF ELEMENTAL SULFUR (S0) AND THIOSULFATE IN THIOBACILLUS-VERSUTUS AND ANOTHER SULFUR-OXIDIZING BACTERIUM [J].
BEFFA, T ;
BERCZY, M ;
ARAGNO, M .
FEMS MICROBIOLOGY LETTERS, 1992, 90 (02) :123-128
[6]  
BEFFA T, 1992, ARCH MICROBIOL, V158, P456
[7]   GROWTH AND RESPIRATORY OXIDATION OF REDUCED SULFUR-COMPOUNDS BY INTACT-CELLS OF THIOBACILLUS-NOVELLUS (TYPE STRAIN) GROWN ON THIOSULFATE [J].
BEFFA, T ;
FISCHER, C ;
ARAGNO, M .
CURRENT MICROBIOLOGY, 1993, 26 (06) :323-326
[8]   CHEMOLITHOAUTOTROPHIC GROWTH ON ELEMENTAL SULFUR (S-DEGREES) AND RESPIRATORY OXIDATION OF S-DEGREES BY THIOBACILLUS-VERSUTUS AND ANOTHER SULFUR-OXIDIZING BACTERIUM [J].
BEFFA, T ;
BERCZY, M ;
ARAGNO, M .
FEMS MICROBIOLOGY LETTERS, 1991, 84 (03) :285-290
[9]  
BRASTED RC, 1961, COMPREHENSIVE ORGANI, V8
[10]  
CHARLES AM, 1966, BIOCHIM BIOPHYS ACTA, V128, P510