Removal of copper and nickel ions from aqueous solutions by grape stalks wastes

被引:374
作者
Villaescusa, I
Fiol, N
Martínez, M
Miralles, N
Poch, J
Serarols, J
机构
[1] Univ Girona, Dept Engn Quim Agr & Tecnol Agroalimentaria, Girona 17003, Spain
[2] Univ Politecn Cataluna, Dept Engn Quim, ETSEIB, E-08028 Barcelona, Spain
[3] Univ Girona, Dept Informat & Matemat Aplicada, Girona 17003, Spain
关键词
grape stalks wastes; copper; nickel; metal removal; sorption isotherms;
D O I
10.1016/j.watres.2003.10.040
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In the present work, the usefulness of grape stalks wastes generated in the wine production process has been investigated for the removal of copper and nickel ions from aqueous solutions. The sorption process was relatively fast and equilibrium was reached after about 60 min of contact. The influence of pH, sodium chloride and metal concentration on metal removal has been studied. Uptake showed a pH-dependent profile. Maximum sorption for both metals was found to occur at around pH 5.5-6.0. An increase of sodium chloride concentration caused a decrease in metal removal. Langmuir isotherms, at pH 6.0, for each metal were used to describe sorption equilibrium data. Maximum uptake obtained was 1.59 x 10(-4) mol of copper and 1.81 x 10(-4) mol of nickel per gram of dry sorbent. Sorption of copper and nickel on grape stalks released an equivalent amount of alkaline and alkaline earth metals (K+, Mg2+, Ca2+) and protons, indicating that ionic exchange is predominantly responsible for metal ion uptake. Fourier transform infrared (FTIR) spectrometry analysis indicated that lignin C-O bond might be involved in metal uptake. Equilibrium batch sorption studies were also performed using a two metal system containing (Cu(II) + Ni(II)). In the evaluation of the two metal sorption system performance, single isotherm curves had to be replaced by three-dimensional sorption isotherm surface. In order to describe the isotherm surface mathematically, the extended-Langmuir model was used. Nickel was found to be much more sensitive to the presence of copper than copper is to the presence of nickel. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:992 / 1002
页数:11
相关论文
共 33 条
[1]   Binary metal sorption by pine bark: Study of equilibria and mechanisms [J].
Al-Asheh, S ;
Duvnjak, Z .
SEPARATION SCIENCE AND TECHNOLOGY, 1998, 33 (09) :1303-1329
[2]   Crab shell for the removal of heavy metals from aqueous solution [J].
An, HK ;
Park, BY ;
Kim, DS .
WATER RESEARCH, 2001, 35 (15) :3551-3556
[3]  
Baes C.F., 1976, HYDROLYSIS CATIONS
[4]   A review of potentially low-cost sorbents for heavy metals [J].
Bailey, SE ;
Olin, TJ ;
Bricka, RM ;
Adrian, DD .
WATER RESEARCH, 1999, 33 (11) :2469-2479
[5]   Biosorption of metal ions from aqueous solutions [J].
Chen, JP ;
Yiacoumi, S .
SEPARATION SCIENCE AND TECHNOLOGY, 1997, 32 (1-4) :51-69
[6]   DESCRIPTION OF 2-METAL BIOSORPTION EQUILIBRIA BY LANGMUIR-TYPE MODELS [J].
CHONG, KH ;
VOLESKY, B .
BIOTECHNOLOGY AND BIOENGINEERING, 1995, 47 (04) :451-460
[7]   INTERACTION OF METALS AND PROTONS WITH ALGAE .2. ION-EXCHANGE IN ADSORPTION AND METAL DISPLACEMENT BY PROTONS [J].
CRIST, RH ;
MARTIN, JR ;
GUPTILL, PW ;
ESLINGER, JM ;
CRIST, DR .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1990, 24 (03) :337-342
[8]   HEAVY-METAL BIOSORPTION BY FUNGAL MYCELIAL BY-PRODUCTS - MECHANISMS AND INFLUENCE OF PH [J].
FOUREST, E ;
ROUX, JC .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1992, 37 (03) :399-403
[9]   BIOSORPTION OF LEAD AND NICKEL BY BIOMASS OF MARINE-ALGAE [J].
HOLAN, ZR ;
VOLESKY, B .
BIOTECHNOLOGY AND BIOENGINEERING, 1994, 43 (11) :1001-1009
[10]   Advances in the biosorption of heavy metals [J].
Kratochvil, D ;
Volesky, B .
TRENDS IN BIOTECHNOLOGY, 1998, 16 (07) :291-300