Terahertz time-domain measurement of ballistic electron resonance in a single-walled carbon nanotube

被引:103
作者
Zhong, Zhaohui [1 ]
Gabor, Nathaniel M. [1 ,2 ]
Sharping, Jay E. [3 ]
Gaeta, Alexander L. [1 ,3 ]
McEuen, Paul L. [1 ,2 ]
机构
[1] Cornell Univ, Ctr Nanoscale Syst, Ithaca, NY 14853 USA
[2] Cornell Univ, Atom & Solid State Phys Lab, Ithaca, NY 14853 USA
[3] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
D O I
10.1038/nnano.2008.60
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Understanding the physics of low-dimensional systems and the operation of next-generation electronics will depend on our ability to measure the electrical properties of nanomaterials at terahertz frequencies ( similar to 100 GHz to 10 THz). Single-walled carbon nanotubes are prototypical one-dimensional nanomaterials because of their unique band structure(1,2) and long carrier mean free path(3-5). Although nanotube transistors have been studied at microwave frequencies ( 100 MHz to 50 GHz) (6-11), no techniques currently exist to probe their terahertz response(12). Here, we describe the first terahertz electrical measurements of single-walled carbon nanotube transistors performed in the time domain. We observe a ballistic electron resonance that corresponds to the round-trip transit of an electron along the nanotube with a picosecond-scale period. The electron velocity is found to be constant and equal to the Fermi velocity, showing that the high-frequency electron response is dominated by single-particle excitations rather than collective plasmon modes. These results demonstrate a powerful new tool for directly probing picosecond electron motion in nanostructures.
引用
收藏
页码:201 / 205
页数:5
相关论文
共 29 条
[1]   Frequency dependent characterization of transport properties in carbon nanotube transistors [J].
Appenzeller, J ;
Frank, DJ .
APPLIED PHYSICS LETTERS, 2004, 84 (10) :1771-1773
[2]   PICOSECOND PHOTOCONDUCTING HERTZIAN DIPOLES [J].
AUSTON, DH ;
CHEUNG, KP ;
SMITH, PR .
APPLIED PHYSICS LETTERS, 1984, 45 (03) :284-286
[3]   Luttinger-liquid behaviour in carbon nanotubes [J].
Bockrath, M ;
Cobden, DH ;
Lu, J ;
Rinzler, AG ;
Smalley, RE ;
Balents, L ;
McEuen, PL .
NATURE, 1999, 397 (6720) :598-601
[4]   Luttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes [J].
Burke, PJ .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2002, 1 (03) :129-144
[5]   Materials for terahertz science and technology [J].
Ferguson, B ;
Zhang, XC .
NATURE MATERIALS, 2002, 1 (01) :26-33
[6]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[7]   Measurement of the quantum capacitance of interacting electrons in carbon nanotubes [J].
Ilani, S. ;
Donev, L. A. K. ;
Kindermann, M. ;
McEuen, P. L. .
NATURE PHYSICS, 2006, 2 (10) :687-691
[8]   DYNAMIC-RESPONSE OF A QUANTUM POINT-CONTACT [J].
KARADI, C ;
JAUHAR, S ;
KOUWENHOVEN, LP ;
WALD, K ;
ORENSTEIN, J ;
MCEUEN, PL .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1994, 11 (12) :2566-2571
[9]   GENERATION OF SUBPICOSECOND ELECTRICAL PULSES ON COPLANAR TRANSMISSION-LINES [J].
KETCHEN, MB ;
GRISCHKOWSKY, D ;
CHEN, TC ;
CHI, CC ;
DULING, IN ;
HALAS, NJ ;
HALBOUT, JM ;
KASH, JA ;
LI, GP .
APPLIED PHYSICS LETTERS, 1986, 48 (12) :751-753
[10]   Terahertz semiconductor-heterostructure laser [J].
Köhler, R ;
Tredicucci, A ;
Beltram, F ;
Beere, HE ;
Linfield, EH ;
Davies, AG ;
Ritchie, DA ;
Iotti, RC ;
Rossi, F .
NATURE, 2002, 417 (6885) :156-159