Surface interpolation based on new local coordinates

被引:25
作者
Sugihara, K [1 ]
机构
[1] Univ Tokyo, Dept Math Engn & Informat Phys, Bunkyo Ku, Tokyo 1138656, Japan
关键词
Voronoi diagram; Delaunay diagram; interpolation scheme;
D O I
10.1016/S0010-4485(98)00079-7
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Sibson found a "local coordinate property" associated with the Voronoi diagram, and applied it to the surface interpolation from given heights at arbitrarily located sites. This article presents another local coordinate property that is also based on the Voronoi diagram. Our new property is simpler in that the coordinates can be computed from the Voronoi diagram directly while Sibson's coordinates require the second-order Voronoi diagram. Moreover, our formula is flexible in the sense that it is valid even if the structure of the Voronoi diagram is incorrectly recognized. On the basis of this formula, a new interpolation scheme is constructed. (C) 1999 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:51 / 58
页数:8
相关论文
共 20 条
[1]  
[Anonymous], ENG MINING J PRESS
[2]  
AURENHAMMER F, 1991, COMPUT SURV, V23, P345, DOI 10.1145/116873.116880
[3]  
Edelsbrunner H., 1987, ALGORITHMS COMBINATO
[4]  
Farin G., 1990, Computer-Aided Geometric Design, V7, P281, DOI 10.1016/0167-8396(90)90036-Q
[5]  
FARIN G, 1997, OR PRES WORKSH VOR D
[6]  
GROSS L, 1997, 13 EUR WORKSH COMP G
[7]  
Grunbaum Branko., 1967, Graduate Texts in Mathematics, V221
[8]   A STATISTICAL APPROACH TO THE PROBLEM OF MISSING SPATIAL DATA USING A 1ST-ORDER MARKOV MODEL [J].
HAINING, R ;
GRIFFITH, DA ;
BENNETT, R .
PROFESSIONAL GEOGRAPHER, 1984, 36 (03) :338-345
[9]  
Okabe A., 1992, SPATIAL TESSELLATION
[10]  
PIPER B, 1993, COMPUT S, V8, P227