Interaction of osmotic stress, temperature, and abscisic acid in the regulation of gene expression in arabidopsis

被引:132
作者
Xiong, LM [1 ]
Ishitani, M [1 ]
Zhu, JK [1 ]
机构
[1] Univ Arizona, Dept Plant Sci, Tucson, AZ 85721 USA
关键词
D O I
10.1104/pp.119.1.205
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The impact of simultaneous environmental stresses on plants and how they respond to combined stresses compared with single stresses is largely unclear. By using a transgene (RD29A-LUC) consisting of the firefly luciferase coding sequence (LUC) driven by the stress-responsive RD29A promoter, we investigated the interactive effects of temperature, osmotic stress, and the phytohormone abscisic acid (ABA) in the regulation of gene expression in Arabidopsis seedlings. Results indicated that both positive and negative interactions exist among the studied stress factors in regulating gene expression. At a normal growth temperature (22 degrees C), osmotic stress and ABA act synergistically to induce the transgene expression. Low temperature inhibits the response to osmotic stress or to combined treatment of osmotic stress and ABA, whereas low temperature and ABA treatments are additive in inducing transgene expression. Although high temperature alone does not activate the transgene, it significantly amplifies the effects of ABA and osmotic stress. The effect of multiple stresses in the regulation of RD29A-LUC expression in signal transduction mutants was also studied. The results are discussed in the context of cold and osmotic stress signal transduction pathways.
引用
收藏
页码:205 / 211
页数:7
相关论文
共 26 条
[1]  
ALLAN AC, 1994, PLANT CELL, V6, P1319
[2]   EVIDENCE FOR AN EXTRACELLULAR RECEPTION SITE FOR ABSCISIC-ACID IN COMMELINA GUARD-CELLS [J].
ANDERSON, BE ;
WARD, JM ;
SCHROEDER, JI .
PLANT PHYSIOLOGY, 1994, 104 (04) :1177-1183
[3]   REGULATION OF EM GENE-EXPRESSION IN RICE - INTERACTION BETWEEN OSMOTIC-STRESS AND ABSCISIC-ACID [J].
BOSTOCK, RM ;
QUATRANO, RS .
PLANT PHYSIOLOGY, 1992, 98 (04) :1356-1363
[4]   MOLECULAR RESPONSES TO WATER-DEFICIT [J].
BRAY, EA .
PLANT PHYSIOLOGY, 1993, 103 (04) :1035-1040
[5]   GENE-EXPRESSION REGULATED BY ABSCISIC-ACID AND ITS RELATION TO STRESS TOLERANCE [J].
CHANDLER, PM ;
ROBERTSON, M .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1994, 45 :113-141
[6]   COLD-ACCLIMATION AND COLD-REGULATED GENE-EXPRESSION IN ABA MUTANTS OF ARABIDOPSIS-THALIANA [J].
GILMOUR, SJ ;
THOMASHOW, MF .
PLANT MOLECULAR BIOLOGY, 1991, 17 (06) :1233-1240
[7]   ABSCISIC-ACID-DEPENDENT AND ABSCISIC-ACID-INDEPENDENT REGULATION OF GENE-EXPRESSION BY PROGRESSIVE DROUGHT IN ARABIDOPSIS-THALIANA [J].
GOSTI, F ;
BERTAUCHE, N ;
VARTANIAN, N ;
GIRAUDAT, J .
MOLECULAR AND GENERAL GENETICS, 1995, 246 (01) :10-18
[8]  
GUY CL, 1994, NATO ADV SCI INST SE, V86, P479
[9]  
HOMASHOW MF, 1994, ARABIDOPSIS, P807
[10]   HIGH-AFFINITY BINDING-SITES FOR ABSCISIC-ACID ON THE PLASMALEMMA OF VICIA-FABA GUARD-CELLS [J].
HORNBERG, C ;
WEILER, EW .
NATURE, 1984, 310 (5975) :321-324