Differential recruitment of the mammalian mediator subunit TRAP220 by estrogen receptors ERα and ERβ

被引:99
作者
Wärnmark, A [1 ]
Almlöf, T [1 ]
Leers, J [1 ]
Gustafsson, JÅ [1 ]
Treuter, E [1 ]
机构
[1] Karolinska Inst, Novum, Dept Biosci, S-14157 Huddinge, Sweden
关键词
D O I
10.1074/jbc.M011651200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Estrogen receptors (ERs) associate with distinct transcriptional coactivators to mediate activation of target genes in response to estrogens. Previous work has provided multiple evidence for a critical role of p160 coactivators and associated histone acetyltransferases in estrogen signaling. In contrast, the involvement of the mammalian mediator complex remains to be established. Further, although the two subtypes ER alpha and ER beta appear to be similar in regard to principles of LXXLL-mediated coactivator binding to the AF-2 activation domain, there are indications that the context-dependent transcriptional activation profiles of the two ERs can be quite distinct. Potentially, this could be attributed to differences with regard to coregulator recruitment. We have here studied the interactions of the nuclear receptor-binding subunit of the mammalian mediator complex, referred to as TRAP220, with ER alpha and ER beta. In comparison to the p160 coactivator TIF2, we find that TRAP220 displays ERP preference. Here, we show that this is a feature of the binding specificity of the TRAP220 LXXLL motifs and demonstrate that the ER subtype-specific F-domain influences TRAP220 interaction. Such differences with regard to coactivator recruitment indicate that the relative importance of individual coregulators in estrogen signaling could depend on the dominant ER subtype.
引用
收藏
页码:23397 / 23404
页数:8
相关论文
共 67 条
[1]   AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer [J].
Anzick, SL ;
Kononen, J ;
Walker, RL ;
Azorsa, DO ;
Tanner, MM ;
Guan, XY ;
Sauter, G ;
Kallioniemi, OP ;
Trent, JM ;
Meltzer, PS .
SCIENCE, 1997, 277 (5328) :965-968
[2]   Molecular basis of agonism and antagonism in the oestrogen receptor [J].
Brzozowski, AM ;
Pike, ACW ;
Dauter, Z ;
Hubbard, RE ;
Bonn, T ;
Engstrom, O ;
Ohman, L ;
Greene, GL ;
Gustafsson, JA ;
Carlquist, M .
NATURE, 1997, 389 (6652) :753-758
[3]   Functional interactions between the estrogen receptor and DRIP205, a subunit of the heteromeric DRIP coactivator complex [J].
Burakov, D ;
Wong, CW ;
Rachez, C ;
Cheskis, BJ ;
Freedman, LP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (27) :20928-20934
[4]   Cloning and characterization of RAP250, a novel nuclear receptor coactivator [J].
Caira, F ;
Antonson, P ;
Pelto-Huikko, M ;
Treuter, E ;
Gustafsson, JÅ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (08) :5308-5317
[5]  
Chang CY, 1999, MOL CELL BIOL, V19, P8226
[6]   Binding of liganded vitamin D receptor to the vitamin D receptor interacting protein coactivator complex induces interaction with RNA polymerase II holoenzyme [J].
Chiba, N ;
Suldan, Z ;
Freedman, LP ;
Parvin, JD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (15) :10719-10722
[7]   Estrogen receptor null mice: What have we learned and where will they lead us? [J].
Couse, JF ;
Korach, KS .
ENDOCRINE REVIEWS, 1999, 20 (03) :358-417
[8]   A comparison of transcriptional activation by ERα and ERβ [J].
Cowley, SM ;
Parker, MG .
JOURNAL OF STEROID BIOCHEMISTRY AND MOLECULAR BIOLOGY, 1999, 69 (1-6) :165-175
[9]   Estrogen receptors alpha and beta form heterodimers on DNA [J].
Cowley, SM ;
Hoare, S ;
Mosselman, S ;
Parker, MG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (32) :19858-19862
[10]  
DAIMONT BD, 1998, GENE DEV, V12, P3343