HD CAG repeat implicates a dominant property of huntingtin in mitochondrial energy metabolism

被引:230
作者
Seong, IS
Ivanova, E
Lee, JM
Choo, YS
Fossale, E
Anderson, M
Gusella, JF
Laramie, JM
Myers, RH
Lesort, M
MacDonald, ME
机构
[1] Massachusetts Gen Hosp, Ctr Human Genet Res, Mol Neurogenet Unit, Richard B Simches Res Ctr, Boston, MA 02114 USA
[2] Univ Alabama Birmingham, Dept Psychiat, Birmingham, AL 35294 USA
[3] Boston Univ, Sch Med, Dept Neurol, Boston, MA 02118 USA
关键词
D O I
10.1093/hmg/ddi319
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The 'expanded' HD CAG repeat that causes Huntington's disease (HD) encodes a polyglutamine tract in huntingtin, which first targets the death of medium-sized spiny striatal neurons. Mitochondrial energetics, related to N-methyl-d-aspartate (NMDA) Ca2+-signaling, has long been implicated in this neuronal specificity, implying an integral role for huntingtin in mitochondrial energy metabolism. As a genetic test of this hypothesis, we have looked for a relationship between the length of the HD CAG repeat, expressed in endogenous huntingtin, and mitochondrial ATP production. In STHdh(Q111) knock-in striatal cells, a juvenile onset HD CAG repeat was associated with low mitochondrial ATP and decreased mitochondrial ADP-uptake. This metabolic inhibition was associated with enhanced Ca2+-influx through NMDA receptors, which when blocked resulted in increased cellular [ATP/ADP]. We then evaluated [ATP/ADP] in 40 human lymphoblastoid cell lines, bearing non-HD CAG lengths (9-34 units) or HD-causing alleles (35-70 units). This analysis revealed an inverse association with the longer of the two allelic HD CAG repeats in both the non-HD and HD ranges. Thus, the polyglutamine tract in huntingtin appears to regulate mitochondrial ADP-phosphorylation in a Ca2+-dependent process that fulfills the genetic criteria for the HD trigger of pathogenesis, and it thereby determines a fundamental biological parameter-cellular energy status, which may contribute to the exquisite vulnerability of striatal neurons in HD. Moreover, the evidence that this polymorphism can determine energy status in the non-HD range suggests that it should be tested as a potential physiological modifier in both health and disease.
引用
收藏
页码:2871 / 2880
页数:10
相关论文
共 59 条
[1]   ALTERNATIVE EXCITOTOXIC HYPOTHESES [J].
ALBIN, RL ;
GREENAMYRE, JT .
NEUROLOGY, 1992, 42 (04) :733-738
[2]   Complex I defect in muscle from patients with Huntington's disease [J].
Arenas, J ;
Campos, Y ;
Ribacoba, R ;
Martín, MA ;
Rubio, JC ;
Ablanedo, P ;
Cabello, A .
ANNALS OF NEUROLOGY, 1998, 43 (03) :397-400
[3]   INTRACELLULAR IONIC VARIATIONS IN THE APOPTOTIC DEATH OF L-CELLS BY INHIBITORS OF CELL-CYCLE PROGRESSION [J].
BARBIERO, G ;
DURANTI, F ;
BONELLI, G ;
AMENTA, JS ;
BACCINO, FM .
EXPERIMENTAL CELL RESEARCH, 1995, 217 (02) :410-418
[4]   AGE-DEPENDENT STRIATAL EXCITOTOXIC LESIONS PRODUCED BY THE ENDOGENOUS MITOCHONDRIAL INHIBITOR MALONATE [J].
BEAL, MF ;
BROUILLET, E ;
JENKINS, B ;
HENSHAW, R ;
ROSEN, B ;
HYMAN, BT .
JOURNAL OF NEUROCHEMISTRY, 1993, 61 (03) :1147-1150
[5]  
BEAL MF, 1993, J NEUROSCI, V13, P4181
[6]  
Belzacq AS, 2003, CANCER RES, V63, P541
[7]   Deranged neuronal calcium signaling and Huntington disease [J].
Bezprozvanny, I ;
Hayden, MR .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2004, 322 (04) :1310-1317
[8]   Effects of chronic MPTP and 3-nitropropionic acid in nonhuman primates [J].
Brouillet, E ;
Hantraye, P .
CURRENT OPINION IN NEUROLOGY, 1995, 8 (06) :469-473
[9]   State-dependent calcium signaling in dendritic spines of striatal medium spiny neurons [J].
Carter, AG ;
Sabatini, BL .
NEURON, 2004, 44 (03) :483-493
[10]   Transcriptional dysregulation in Huntington's disease [J].
Cha, JHJ .
TRENDS IN NEUROSCIENCES, 2000, 23 (09) :387-392