Effect of noise on nonhyperbolic chaotic attractors

被引:20
作者
Schroer, CG
Ott, E
Yorke, JA
机构
[1] Univ Maryland, Dept Elect Engn, Inst Plasma Res, College Pk, MD 20742 USA
[2] Univ Maryland, Inst Syst Sci, College Pk, MD 20742 USA
[3] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
关键词
D O I
10.1103/PhysRevLett.81.1397
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the effect of small noise of maximum amplitude epsilon on a chaotic system whose noiseless trajectories limit on a fractal strange attractor. For the case of nonhyperbolic attractors of two dimensional maps the effect of noise can be much stronger than for hyperbolic attractors. In particular, the maximum over all noisy orbit points of the distance between the noisy orbit and the noiseless nonhyperbolic attractor scales like epsilon(1/D1) (D-1 > 1 is the information dimension of the attractor), rather than like epsilon (the hyperbolic case). We also find a phase transition in the scaling of the time averaged moments of the deviations of a noisy orbit from the noiseless attractor.
引用
收藏
页码:1397 / 1400
页数:4
相关论文
共 18 条
[1]   SCALING OF 1ST PASSAGE TIMES FOR NOISE INDUCED CRISES [J].
ARECCHI, FT ;
BADII, R ;
POLITI, A .
PHYSICS LETTERS A, 1984, 103 (1-2) :3-7
[2]   THE ENTROPY FUNCTION FOR CHARACTERISTIC EXPONENTS [J].
BOHR, T ;
RAND, D .
PHYSICA D, 1987, 25 (1-3) :387-398
[3]   FLUCTUATIONS AND SIMPLE CHAOTIC DYNAMICS [J].
CRUTCHFIELD, JP ;
FARMER, JD ;
HUBERMAN, BA .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1982, 92 (02) :45-82
[4]   TOPOLOGICAL AND METRIC PROPERTIES OF HENON-TYPE STRANGE ATTRACTORS [J].
CVITANOVIC, P ;
GUNARATNE, GH ;
PROCACCIA, I .
PHYSICAL REVIEW A, 1988, 38 (03) :1503-1520
[5]  
Friedman J. H., 1977, ACM Transactions on Mathematical Software, V3, P209, DOI 10.1145/355744.355745
[6]   SCALING LAWS FOR INVARIANT-MEASURES ON HYPERBOLIC AND NONHYPERBOLIC ATTRACTORS [J].
GRASSBERGER, P ;
BADII, R ;
POLITI, A .
JOURNAL OF STATISTICAL PHYSICS, 1988, 51 (1-2) :135-178
[7]   GLOBAL DYNAMICAL BEHAVIOR OF THE OPTICAL-FIELD IN A RING CAVITY [J].
HAMMEL, SM ;
JONES, CKRT ;
MOLONEY, JV .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1985, 2 (04) :552-564
[8]   Homoclinic tangencies and non-normal Jacobians - Effects of noise in nonhyperbolic chaotic systems [J].
Jaeger, L ;
Kantz, H .
PHYSICA D, 1997, 105 (1-3) :79-96
[9]  
Kaplan J., 1979, Lect. Notes Math., P204
[10]  
KAUTZ RL, 1982, J APPL PHYS, V62, P198