Characterization of serine and threonine phosphorylation sites in β-elimination ethanethiol addition-modified proteins by electrospray tandem mass spectrometry and database searching

被引:102
作者
Jaffe, H [1 ]
Veeranna
Pant, HC
机构
[1] NINDS, Protein Peptide Sequencing Fac, LNC, NIH, Bethesda, MD 20892 USA
[2] NINDS, Neurochem Lab, NIH, Bethesda, MD 20892 USA
关键词
D O I
10.1021/bi981264p
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A new method for the characterization of serine and threonine phosphorylation sites in proteins has been developed. After modification of a phosphoprotein by beta-elimination/ethanethiol addition and conversion of phosphoserine and phosphothreonine residues to S-ethylcysteinyl or beta-methyl-S-ethylcysteinyl residues, the modified protein was subjected to proteolytic digestion. Resulting digests were analyzed by a combination of microbore liquid chromatography, electrospray ionization tandem (MS/MS) ion trap mass spectrometry and database searching to identify original phosphorylated residues. The computer program utilized (SEQUEST) is capable of identifying peptides and modified residues from uninterpreted MS/MS spectra, and using this method, all of the five known phosphorylation sites in bovine beta-casein were identified. Application of the method to multiply phosphorylated human high molecular weight neurofilament protein (NF-H) resulted in the identification of 21 peptides and their modified residues and hence, the in vivo phosphorylation sites. These included 26 KSP and 1 KTP site, all of which occur in the KSP repeat C-terminal tail domain (residues 502-823). One site at residue 518 was previously uncharacterized. A novel non-KSP serine at residue 421 near the KLLEGEE region in a IPFSLPE motif was characterized as phosphorylated (or glycosylated). The 27 characterized phosphorylation sites occur at S/TP residues in the following motifs: KSPVKEE, KSPAEAK, KSPEKEE, KSPAEVK, KSPEKAK, KSPPEAK, KSPVKAE, and KTPAKEE. On the basis of kinase consensus sequences, all of these motifs, including the previously unreported KTPAKEE motif, can be phosphorylated by proline-directed kinases. Advantages of the new method vis-a-vis our previously reported method [Jaffe, H,, Veeranna, Shetty, K. T., and Pant, H. C. (1998) Biochemistry 37, 3931-3940] include (i) production of diastereomers eluting at different retention times increased the chances of peptide identification, (ii) increased hydrophobicity and hence retention time of the modified peptides, (iii) facilitation of positive ion production, and (iv) increased susceptibility to tryptic digestion as a result of conversion of negatively charged phosphorylated residues to neutral S-ethylcysteine or beta-methyl-S-ethylcysteine residues.
引用
收藏
页码:16211 / 16224
页数:14
相关论文
共 43 条