The involvement of p53 in dopamine-induced apoptosis of cerebellar granule neurons and leukemic cells overexpressing p53

被引:50
作者
Daily, D
Barzilai, A
Offen, D
Kamsler, A
Melamed, E
Ziv, I
机构
[1] Tel Aviv Univ, George S Wise Fac Life Sci, Dept Neurobiochem, IL-69978 Tel Aviv, Israel
[2] Tel Aviv Univ, Sackler Sch Med, IL-69978 Tel Aviv, Israel
[3] Beilinson Med Ctr, Dept Neurol, IL-69978 Tel Aviv, Israel
[4] Beilinson Med Ctr, Felsenstein Res Inst, IL-69978 Tel Aviv, Israel
关键词
Parkinson's disease; catecholamines; oxidative metabolites; phosphorylation; DNA damage; apoptosis; p53;
D O I
10.1023/A:1006933312401
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
1. The pathogenesis of the selective degeneration of the dopaminergic neurons in Parkinson's disease is still enigmatic. Recently we have shown that dopamine can induce apoptosis in postmitotic neuronal cells, as well as in other cellular systems, thus suggesting a role for this endogenous neurotransmitter and associated oxidative stress in the neuronal death process. 2. Dopamine has been shown to be capable of inducing DNA damage through its oxidative metabolites. p53 is a transcription factor that has a major role in determining cell fate in response to DNA damage. We therefore examined the possible correlation between dopamine-triggered apoptosis, DNA damage and levels of total phosphorylated p53 protein in cultured mouse cerebellar granule neurons. 3. Marked DNA damage and apoptotic nuclear condensation and fragmentation were detected within several hours of exposure to dopamine. An associated marked threefold increase in p53 phosphorylation was observed within this time window. Using a temperature-sensitive p53 activation system in leukemia LTR6 cells, were found that p53 inactivation dramatically attenuated dopamine toxicity. 4. We therefore conclude that DNA damage and p53 activation may have a role in mediating dopamine-induced apoptosis. Modulation of the p53 system may therefore have a protective role against the toxicity of this endogenous neurotransmitter and associated oxidative stress.
引用
收藏
页码:261 / 276
页数:16
相关论文
共 38 条
[1]   Isolation of 10 differentially expressed cDNAs in p53-induced apoptosis: Activation of the vertebrate homologue of the Drosophila seven in absentia gene [J].
Amson, RB ;
Nemani, M ;
Roperch, JP ;
Israeli, D ;
Bougueleret, L ;
LeGall, I ;
Medhioub, M ;
LinaresCruz, G ;
Lethrosne, F ;
Pasturaud, P ;
Piouffre, L ;
Prieur, S ;
Susini, L ;
Alvaro, V ;
Millasseau, P ;
Guidicelli, C ;
Bui, H ;
Massart, C ;
Cazes, L ;
Dufour, F ;
BruzzoniGiovanelli, H ;
Owadi, H ;
Hennion, C ;
Charpak, G ;
Dausset, J ;
Calvo, F ;
Oren, M ;
Cohen, D ;
Telerman, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (09) :3953-3957
[2]   A RAPID AND SENSITIVE ASSAY FOR THE DETECTION OF DNA FRAGMENTATION DURING EARLY PHASES OF APOPTOSIS [J].
BASNAKIAN, AG ;
JAMES, SJ .
NUCLEIC ACIDS RESEARCH, 1994, 22 (13) :2714-2715
[3]   p53 in signaling checkpoint arrest or apoptosis [J].
Bates, S ;
Vousden, KH .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 1996, 6 (01) :12-18
[4]   RADIATION-INDUCED CELL-CYCLE ARREST COMPROMISED BY P21 DEFICIENCY [J].
BRUGAROLAS, J ;
CHANDRASEKARAN, C ;
GORDON, JI ;
BEACH, D ;
JACKS, T ;
HANNON, GJ .
NATURE, 1995, 377 (6549) :552-557
[5]   INDUCTION OF THE GROWTH INHIBITOR IGF-BINDING PROTEIN-3 BY P53 [J].
BUCKBINDER, L ;
TALBOTT, R ;
VELASCOMIGUEL, S ;
TAKENAKA, I ;
FAHA, B ;
SEIZINGER, BR ;
KLEY, N .
NATURE, 1995, 377 (6550) :646-649
[6]   ELECTROPHORETIC SEPARATIONS OF LARGE DNA-MOLECULES BY PERIODIC INVERSION OF THE ELECTRIC-FIELD [J].
CARLE, GF ;
FRANK, M ;
OLSON, MV .
SCIENCE, 1986, 232 (4746) :65-68
[7]   INDUCTION OF APOPTOSIS IN CEREBELLAR GRANULE NEURONS BY LOW POTASSIUM - INHIBITION OF DEATH BY INSULIN-LIKE GROWTH FACTOR-I AND CAMP [J].
D'MELLO, SR ;
GALLI, C ;
CIOTTI, T ;
CALISSANO, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (23) :10989-10993
[8]   MICE LACKING P21(C/P1/WAF1) UNDERGO NORMAL DEVELOPMENT, BUT ARE DEFECTIVE IN G1 CHECKPOINT CONTROL [J].
DENG, CX ;
ZHANG, PM ;
HARPER, JW ;
ELLEDGE, SJ ;
LEDER, P .
CELL, 1995, 82 (04) :675-684
[9]  
Friedlander P, 1996, MOL CELL BIOL, V16, P4961
[10]  
Gallagher S.R., 1989, CURR PROT MOL BIOL