Structure of the signal recognition particle interacting with the elongation-arrested ribosome

被引:331
作者
Halic, M
Becker, T
Pool, MR
Spahn, CMT
Grassucci, RA
Frank, J
Beckmann, R
机构
[1] Humboldt Univ, Univ Med Sch, Charite, Inst Biochem, D-10117 Berlin, Germany
[2] Univ Manchester, Sch Biol Sci, Manchester M13 9PT, Lancs, England
[3] Humboldt Univ, Univ Med Sch, Charite, Inst Med Phys & Biophys, D-10117 Berlin, Germany
[4] Hlth Res Inc, Wadsworth Ctr, Howard Hughes Med Inst, Albany, NY 12201 USA
[5] SUNY Albany, Dept Biomed Sci, Albany, NY 12222 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
D O I
10.1038/nature02342
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cotranslational translocation of proteins across or into membranes is a vital process in all kingdoms of life. It requires that the translating ribosome be targeted to the membrane by the signal recognition particle (SRP), an evolutionarily conserved ribonucleoprotein particle. SRP recognizes signal sequences of nascent protein chains emerging from the ribosome. Subsequent binding of SRP leads to a pause in peptide elongation and to the ribosome docking to the membrane-bound SRP receptor. Here we present the structure of a targeting complex consisting of mammalian SRP bound to an active 80S ribosome carrying a signal sequence. This structure, solved to 12 Angstrom by cryo-electron microscopy, enables us to generate a molecular model of SRP in its functional conformation. The model shows how the S domain of SRP contacts the large ribosomal subunit at the nascent chain exit site to bind the signal sequence, and that the Alu domain reaches into the elongation-factor- binding site of the ribosome, explaining its elongation arrest activity.
引用
收藏
页码:808 / 814
页数:7
相关论文
共 50 条
[1]   CHANGES IN 7SL RNA CONFORMATION DURING THE SIGNAL RECOGNITION PARTICLE CYCLE [J].
ANDREAZZOLI, M ;
GERBI, SA .
EMBO JOURNAL, 1991, 10 (04) :767-777
[2]   EVIDENCE FOR AN EXTENDED 7SL RNA STRUCTURE IN THE SIGNAL RECOGNITION PARTICLE [J].
ANDREWS, DW ;
WALTER, P ;
OTTENSMEYER, FP .
EMBO JOURNAL, 1987, 6 (11) :3471-3477
[3]   The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution [J].
Ban, N ;
Nissen, P ;
Hansen, J ;
Moore, PB ;
Steitz, TA .
SCIENCE, 2000, 289 (5481) :905-920
[4]   Crystal structure of the ribonucleoprotein core of the signal recognition particle [J].
Batey, RT ;
Rambo, RP ;
Lucast, L ;
Rha, B ;
Doudna, JA .
SCIENCE, 2000, 287 (5456) :1232-+
[5]   Architecture of the protein-conducting channel associated with the translating 80S ribosome [J].
Beckmann, R ;
Spahn, CMT ;
Eswar, N ;
Helmers, J ;
Penczek, PA ;
Sali, A ;
Frank, J ;
Blobel, G .
CELL, 2001, 107 (03) :361-372
[6]   MODEL FOR SIGNAL SEQUENCE RECOGNITION FROM AMINO-ACID-SEQUENCE OF 54K SUBUNIT OF SIGNAL RECOGNITION PARTICLE [J].
BERNSTEIN, HD ;
PORITZ, MA ;
STRUB, K ;
HOBEN, PJ ;
BRENNER, S ;
WALTER, P .
NATURE, 1989, 340 (6233) :482-486
[7]  
BLOBEL G, 1971, BIOMEMBRANE, P193
[8]  
CARSON M, 1991, J APPL CRYSTALLOGR, V24, P103
[9]   THE SIGNAL RECOGNITION PARTICLE RECEPTOR MEDIATES THE GTP-DEPENDENT DISPLACEMENT OF SRP FROM THE SIGNAL SEQUENCE OF THE NASCENT POLYPEPTIDE [J].
CONNOLLY, T ;
GILMORE, R .
CELL, 1989, 57 (04) :599-610
[10]   Ligand crowding at a nascent signal sequence [J].
Eisner, G ;
Koch, HG ;
Beck, K ;
Brunner, J ;
Müller, M .
JOURNAL OF CELL BIOLOGY, 2003, 163 (01) :35-44