The physiology, genetics and molecular biology of plant aluminum resistance and toxicity

被引:567
作者
Kochian, LV [1 ]
Piñeros, MA [1 ]
Hoekenga, OA [1 ]
机构
[1] Cornell Univ, US Plant Soil & Nutr Lab, USDA ARS, Ithaca, NY 14853 USA
关键词
aluminum resistance; aluminum toxicity; anion channel; organic acid exudation;
D O I
10.1007/s11104-004-1158-7
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Aluminum (Al) toxicity is the primary factor limiting crop production on acidic soils (pH values of 5 or below), and because 50% of the world's potentially arable lands are acidic, Al toxicity is a very important limitation to worldwide crop production. This review examines our current understanding of mechanisms of Al toxicity, as well as the physiological, genetic and molecular basis for Al resistance. Al resistance can be achieved by mechanisms that facilitate Al exclusion from the root apex (Al exclusion) and/or by mechanisms that confer the ability of plants to tolerate Al in the plant symplasm (Al tolerance). Compelling evidence has been presented in the literature for a resistance mechanism based on exclusion of Al due to Al-activated carboxylate release from the growing root tip. More recently, researchers have provided support for an additional Al-resistance mechanism involving internal detoxification of Al with carboxylate ligands (deprotonated organic acids) and the sequestration of the Al-carboxylate complexes in the vacuole. This is a field that is entering a phase of new discovery, as researchers are on the verge of identifying some of the genes that contribute to Al resistance in plants. The identification and characterization of Al resistance genes will not only greatly advance our understanding of Al-resistance mechanisms, but more importantly, will be the source of new molecular resources that researchers will use to develop improved crops better suited for cultivation on acid soils.
引用
收藏
页码:175 / 195
页数:21
相关论文
共 173 条
[1]   Aluminum inhibits the H+-ATPase activity by permanently altering the plasma membrane surface potentials in squash roots [J].
Ahn, SJ ;
Sivaguru, M ;
Osawa, H ;
Chung, GC ;
Matsumoto, H .
PLANT PHYSIOLOGY, 2001, 126 (04) :1381-1390
[2]   Aluminium-induced growth inhibition is associated with impaired efflux and influx of H+ across the plasma membrane in root apices of squash (Cucurbita pepo) [J].
Ahn, SJ ;
Sivaguru, M ;
Chung, GC ;
Rengel, Z ;
Matsumoto, H .
JOURNAL OF EXPERIMENTAL BOTANY, 2002, 53 (376) :1959-1966
[3]   UPTAKE OF ALUMINUM INTO ROOT CYTOPLASM - PREDICTED RATES FOR IMPORTANT SOLUTION COMPLEXES [J].
AKESON, M ;
MUNNS, DN .
JOURNAL OF PLANT NUTRITION, 1990, 13 (05) :467-484
[4]   LIPID BILAYER PERMEATION BY NEUTRAL ALUMINUM CITRATE AND BY 3 ALPHA-HYDROXY CARBOXYLIC-ACIDS [J].
AKESON, MA ;
MUNNS, DN .
BIOCHIMICA ET BIOPHYSICA ACTA, 1989, 984 (02) :200-206
[5]   Aluminum toxicity studies in Vaucheria longicaulis var. macounii (Xanthophyta, Tribophyceae).: II.: Effects on the F-actin array [J].
Alessa, L ;
Oliveira, L .
ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2001, 45 (03) :223-237
[6]   DEMONSTRATION THAT CFTR IS A CHLORIDE CHANNEL BY ALTERATION OF ITS ANION SELECTIVITY [J].
ANDERSON, MP ;
GREGORY, RJ ;
THOMPSON, S ;
SOUZA, DW ;
PAUL, S ;
MULLIGAN, RC ;
SMITH, AE ;
WELSH, MJ .
SCIENCE, 1991, 253 (5016) :202-205
[7]   CHROMOSOME LOCATION OF GENES-CONTROLLING ALUMINUM TOLERANCE IN WHEAT, RYE, AND TRITICALE [J].
ANIOL, A ;
GUSTAFSON, JP .
CANADIAN JOURNAL OF GENETICS AND CYTOLOGY, 1984, 26 (06) :701-705
[8]  
[Anonymous], 2000, Land Resource Potential and Constraints at Regional and Country Levels
[9]   Anion channels in higher plants: functional characterization, molecular structure and physiological role [J].
Barbier-Brygoo, H ;
Vinauger, M ;
Colcombet, J ;
Ephritikhine, G ;
Frachisse, JM ;
Maurel, C .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2000, 1465 (1-2) :199-218
[10]   Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: a review [J].
Barcelo, J ;
Poschenrieder, C .
ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2002, 48 (01) :75-92