Assessment of the OLYP and O3LYP density functionals for first-row transition metals

被引:68
作者
Baker, J [1 ]
Pulay, P [1 ]
机构
[1] Univ Arkansas, Dept Chem, Fayetteville, AR 72701 USA
关键词
transition metals; density functional theory; BLYP/B3LYP functionals; OLYP/O3LYP functionals;
D O I
10.1002/jcc.10280
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We have investigated the performance of the OLYP and O3LYP density functionals for predicting atomic excitation energies and ionization potentials, and bond dissociation energies, geometries, and vibrational frequencies for selected first-row transition metal compounds, including hydrides (MH) and singly charged methylene and methyl cations. The OLYP and O3LYP functionals are similar to the well-known BLYP and B3LYP functionals, respectively, but use a new optimized exchange functional (OPTX) developed by Handy and Cohen (Mol Phys 2001, 99, 403) in place of the standard B88 exchange. A previous study by us on organic reactions (J Chem Phys 2002, 117, 1331) indicated that both OLYP and O3LYP gave results for heats of reaction and barrier heights that were overall superior to those using the popular B3LYP functional. For transition metals, however, although OLYP is overall superior to BLYP for molecular calculations, it is inferior to B3LYP. O3LYP provides results for molecules of about the same quality as B3LYP. For atomic excitation and 4s ionization energies, unless relativistic effects are included, OLYP and O3LYP are clearly worse than both BLYP and B3LYP. There is thus no real incentive to use either OLYP or O3LYP in place of B3LYP for calculations involving first-row transition metals. (C) 2003 Wiley Periodicals, Inc.
引用
收藏
页码:1184 / 1191
页数:8
相关论文
共 47 条
[1]   MOLECULAR-STRUCTURE OF GASEOUS VANADYL(V) FLUORIDE AS STUDIED BY ELECTRON-DIFFRACTION, AND ITS MODIFIED VALENCE FORCE-FIELD [J].
ALMENNINGEN, A ;
SAMDAL, S ;
CHRISTEN, D .
JOURNAL OF MOLECULAR STRUCTURE, 1978, 48 (01) :69-78
[2]  
Armentrout P. B., 1992, Transition Metal Hydrides
[3]   PERIODIC TRENDS IN GAS-PHASE M-H AND M-C BOND-ENERGIES [J].
ARMENTROUT, PB ;
GEORGIADIS, R .
POLYHEDRON, 1988, 7 (16-17) :1573-1581
[4]   STUDY OF SOME ORGANIC-REACTIONS USING DENSITY-FUNCTIONAL THEORY [J].
BAKER, J ;
MUIR, M ;
ANDZELM, J .
JOURNAL OF CHEMICAL PHYSICS, 1995, 102 (05) :2063-2079
[5]   Assessment of the Handy-Cohen optimized exchange density functional for organic reactions [J].
Baker, J ;
Pulay, P .
JOURNAL OF CHEMICAL PHYSICS, 2002, 117 (04) :1441-1449
[6]   SPIN CONTAMINATION IN DENSITY-FUNCTIONAL THEORY [J].
BAKER, J ;
SCHEINER, A ;
ANDZELM, J .
CHEMICAL PHYSICS LETTERS, 1993, 216 (3-6) :380-388
[7]  
Barone V, 1997, INT J QUANTUM CHEM, V61, P443, DOI 10.1002/(SICI)1097-461X(1997)61:3<443::AID-QUA11>3.0.CO
[8]  
2-A
[9]   THEORETICAL-STUDY OF THE FIRST TRANSITION ROW OXIDES AND SULFIDES [J].
BAUSCHLICHER, CW ;
MAITRE, P .
THEORETICA CHIMICA ACTA, 1995, 90 (2-3) :189-203
[10]   THEORETICAL CONFIRMATION OF A DELTA-4 GROUND-STATE FOR FEH [J].
BAUSCHLICHER, CW ;
LANGHOFF, SR .
CHEMICAL PHYSICS LETTERS, 1988, 145 (03) :205-210