机构:
Univ Illinois, Dept Gen Engn, Urbana, IL 61801 USAUniv Illinois, Dept Gen Engn, Urbana, IL 61801 USA
Harik, GR
[1
]
Lobo, FG
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Gen Engn, Urbana, IL 61801 USAUniv Illinois, Dept Gen Engn, Urbana, IL 61801 USA
Lobo, FG
[1
]
Goldberg, DE
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Gen Engn, Urbana, IL 61801 USAUniv Illinois, Dept Gen Engn, Urbana, IL 61801 USA
Goldberg, DE
[1
]
机构:
[1] Univ Illinois, Dept Gen Engn, Urbana, IL 61801 USA
来源:
1998 IEEE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION - PROCEEDINGS
|
1998年
关键词:
D O I:
10.1109/ICEC.1998.700083
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
This paper introduces the compact genetic algorithm (cGA). The cGA represents the population as a probability distribution over the set of solutions, and is operationally equivalent to the order-one behavior of the simple GA with uniform crossover. It processes each gene independently and requires less memory than the simple GA.