Transcriptional Regulation of ROS Controls Transition from Proliferation to Differentiation in the Root

被引:817
作者
Tsukagoshi, Hironaka [1 ,2 ,3 ]
Busch, Wolfgang [1 ,2 ,3 ]
Benfey, Philip N. [1 ,2 ,3 ]
机构
[1] Duke Univ, Dept Biol, Durham, NC 27708 USA
[2] Duke Univ, Inst Genome Sci, Durham, NC 27708 USA
[3] Duke Univ, Policy Ctr Syst Biol, Durham, NC 27708 USA
关键词
REACTIVE OXYGEN; ARABIDOPSIS ROOT; HYDROGEN-PEROXIDE; CELL-DIVISION; THIOREDOXIN; SUPEROXIDE; EXPRESSION; OXIDASE; INTERPLAY; PATHWAY;
D O I
10.1016/j.cell.2010.10.020
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The balance between cellular proliferation and differentiation is a key aspect of development in multicellular organisms. Using high-resolution expression data from the Arabidopsis root, we identified a transcription factor, UPBEAT1 (UPB1), that regulates this balance. Genomewide expression profiling coupled with ChIP-chip analysis revealed that UPB1 directly regulates the expression of a set of peroxidases that modulate the balance of reactive oxygen species (ROS) between the zones of cell proliferation and the zone of cell elongation where differentiation begins. Disruption of UPB1 activity alters this ROS balance, leading to a delay in the onset of differentiation. Modulation of either ROS balance or peroxidase activity through chemical reagents affects the onset of differentiation in a manner consistent with the postulated UPB1 function. This pathway functions independently of auxin and cytokinin plant hormonal signaling. Comparison to ROS-regulated growth control in animals suggests that a similar mechanism is used in plants and animals.
引用
收藏
页码:606 / 616
页数:11
相关论文
共 41 条
[1]   The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche [J].
Aida, M ;
Beis, D ;
Heidstra, R ;
Willemsen, V ;
Blilou, I ;
Galinha, C ;
Nussaume, L ;
Noh, YS ;
Amasino, R ;
Scheres, B .
CELL, 2004, 119 (01) :109-+
[2]   Production and scavenging of reactive oxygen species in chloroplasts and their functions [J].
Asada, Kozi .
PLANT PHYSIOLOGY, 2006, 141 (02) :391-396
[3]  
Barcelo AR, 1997, INT REV CYTOL, V176, P87, DOI 10.1016/S0074-7696(08)61609-5
[4]   Interplay between the NADP-Linked Thioredoxin and Glutathione Systems in Arabidopsis Auxin Signaling [J].
Bashandy, Talaat ;
Guilleminot, Jocelyne ;
Vernoux, Teva ;
Caparros-Ruiz, David ;
Ljung, Karin ;
Meyer, Yves ;
Reichheld, Jean-Philippe .
PLANT CELL, 2010, 22 (02) :376-391
[5]   Analysis of cell division and elongation underlying the developmental acceleration of root growth in Arabidopsis thaliana [J].
Beemster, GTS ;
Baskin, TI .
PLANT PHYSIOLOGY, 1998, 116 (04) :1515-1526
[6]   Localization of hydrogen peroxide accumulation during the hypersensitive reaction of lettuce cells to Pseudomonas syringae pv phaseolicola [J].
Bestwick, CS ;
Brown, IR ;
Bennett, MHR ;
Mansfield, JW .
PLANT CELL, 1997, 9 (02) :209-221
[7]   REDUCTION OF NITRO BLUE TETRAZOLIUM BY CO2- AND O-2- RADICALS [J].
BIELSKI, BHJ ;
SHIUE, GG ;
BAJUK, S .
JOURNAL OF PHYSICAL CHEMISTRY, 1980, 84 (08) :830-833
[8]   Combining expression and comparative evolutionary analysis.: The COBRA gene family [J].
Brady, Siobhan M. ;
Song, Shuang ;
Dhugga, Kanwarpal S. ;
Rafalski, J. Antoni ;
Benfey, Philip N. .
PLANT PHYSIOLOGY, 2007, 143 (01) :172-187
[9]   HYDROXAMATE-STIMULATED O-2 UPTAKE IN ROOTS OF PISUM-SATIVUM AND ZEA-MAYS, MEDIATED BY A PEROXIDASE - ITS CONSEQUENCES FOR RESPIRATION MEASUREMENTS [J].
BROUWER, KS ;
VANVALEN, T ;
DAY, DA ;
LAMBERS, H .
PLANT PHYSIOLOGY, 1986, 82 (01) :236-240
[10]   Redox regulation of cell-cycle re-entry: Cyclin D1 as a primary target for the mitogenic effects of reactive oxygen and nitrogen species [J].
Burch, PM ;
Heintz, NH .
ANTIOXIDANTS & REDOX SIGNALING, 2005, 7 (5-6) :741-751