CT substitute derived from MRI sequences with ultrashort echo time

被引:259
作者
Johansson, Adam [1 ]
Karlsson, Mikael [1 ]
Nyholm, Tufve [1 ]
机构
[1] Umea Univ, Dept Radiat Sci, Umea, Sweden
关键词
magnetic resonance imaging; computed tomography substitute; ultrashort echo time; Gaussian mixture; dose calculation; MAGNETIC-RESONANCE; ATTENUATION-CORRECTION; DISTORTION CORRECTION; BRAIN; RADIOTHERAPY; ACCURACY; PET/MRI;
D O I
10.1118/1.3578928
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: Methods for deriving computed tomography (CT) equivalent information from MRI are needed for attenuation correction in PET/MRI applications, as well as for patient positioning and dose planning in MRI based radiation therapy workflows. This study presents a method for generating a drop in substitute for a CT image from a set of magnetic resonance (MR) images. Methods: A Gaussian mixture regression model was used to link the voxel values in CT images to the voxel values in images from three MRI sequences: one T2 weighted 3D spin echo based sequence and two dual echo ultrashort echo time MRI sequences with different echo times and flip angles. The method used a training set of matched MR and CT data that after training was able to predict a substitute CT (s-CT) based entirely on the MR information for a new patient. Method validation was achieved using datasets covering the heads of five patients and applying leave-one-out cross-validation (LOOCV). During LOOCV, the model was estimated from the MR and CT data of four patients (training set) and applied to the MR data of the remaining patient (validation set) to generate an s-CT image. This procedure was repeated for all five training and validation data combinations. Results: The mean absolute error for the CT number in the s-CT images was 137 HU. No large differences in method accuracy were noted for the different patients, indicating a robust method. The largest errors in the s-CT images were found at air-tissue and bone-tissue interfaces. The model accurately discriminated between air and bone, as well as between soft tissues and nonsoft tissues. Conclusions: The s-CT method has the potential to provide an accurate estimation of CT information without risk of geometrical inaccuracies as the model is voxel based. Therefore, s-CT images could be well suited as alternatives to CT images for dose planning in radiotherapy and attenuation correction in PET/MRI. (C) 2011 American Association of Physicists in Medicine. [DOI: 10.1118/1.3578928]
引用
收藏
页码:2708 / 2714
页数:7
相关论文
共 22 条
[1]  
[Anonymous], NETLAB NEURAL NETWOR
[2]   Time-resolved contrast-enhanced imaging with isotropic resolution and broad coverage using an undersampled 3D projection trajectory [J].
Barger, AV ;
Block, WF ;
Toropov, Y ;
Grist, TM ;
Mistretta, CA .
MAGNETIC RESONANCE IN MEDICINE, 2002, 48 (02) :297-305
[3]  
Boettger T, 2008, P SPIE, V6918
[4]   Toward Implementing an MRI-Based PET Attenuation-Correction Method for Neurologic Studies on the MR-PET Brain Prototype [J].
Catana, Ciprian ;
van der Kouwe, Andre ;
Benner, Thomas ;
Michel, Christian J. ;
Hamm, Michael ;
Fenchel, Matthias ;
Fischl, Bruce ;
Rosen, Bruce ;
Schmand, Matthias ;
Sorensen, A. Gregory .
JOURNAL OF NUCLEAR MEDICINE, 2010, 51 (09) :1431-1438
[5]   MRI-based treatment planning for radiotherapy: Dosimetric verification for prostate IMRT [J].
Chen, LL ;
Price, RA ;
Wang, L ;
Li, JS ;
Qin, LH ;
McNeeley, S ;
Ma, CMC ;
Freedman, GM ;
Pollack, A .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2004, 60 (02) :636-647
[6]   A complete distortion correction for MR images: I. Gradient warp correction [J].
Doran, SJ ;
Charles-Edwards, L ;
Reinsberg, SA ;
Leach, MO .
PHYSICS IN MEDICINE AND BIOLOGY, 2005, 50 (07) :1343-1361
[7]  
Figueiredo MAT, 2000, INT C PATT RECOG, P618, DOI 10.1109/ICPR.2000.906151
[8]  
Ghahramani Zoubin, 1994, Advances in Neural Information Processing Systems (NIPS), P120
[9]   MRI-Based Attenuation Correction for PET/MRI: A Novel Approach Combining Pattern Recognition and Atlas Registration [J].
Hofmann, Matthias ;
Steinke, Florian ;
Scheel, Verena ;
Charpiat, Guillaume ;
Farquhar, Jason ;
Aschoff, Philip ;
Brady, Michael ;
Schoelkopf, Bernhard ;
Pichler, Bernd J. .
JOURNAL OF NUCLEAR MEDICINE, 2008, 49 (11) :1875-1883
[10]   Treatment planning using MRI data: an analysis of the dose calculation accuracy for different treatment regions [J].
Jonsson, Joakim H. ;
Karlsson, Magnus G. ;
Karlsson, Mikael ;
Nyholm, Tufve .
RADIATION ONCOLOGY, 2010, 5