共 46 条
Ancestral Mutation in Telomerase Causes Defects in Repeat Addition Processivity and Manifests As Familial Pulmonary Fibrosis
被引:93
作者:
Alder, Jonathan K.
[1
]
Cogan, Joy D.
[2
]
Brown, Andrew F.
[3
]
Anderson, Collin J.
[1
]
Lawson, William E.
[4
]
Lansdorp, Peter M.
[5
,6
]
Phillips, John A., III
[2
]
Loyd, James E.
[4
]
Chen, Julian J. -L.
[3
,7
]
Armanios, Mary
[1
,8
]
机构:
[1] Johns Hopkins Univ, Sch Med, Dept Oncol, Baltimore, MD 21205 USA
[2] Vanderbilt Univ, Dept Pediat, Nashville, TN USA
[3] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ USA
[4] Vanderbilt Univ, Dept Med, Nashville, TN USA
[5] Univ British Columbia, Terry Fox Lab, Vancouver, BC V5Z 1M9, Canada
[6] Univ British Columbia, Dept Med, Vancouver, BC, Canada
[7] Arizona State Univ, Sch Life Sci, Tempe, AZ USA
[8] Johns Hopkins Univ, Sch Med, McKusick Nathans Inst Genet Med, Baltimore, MD USA
来源:
PLOS GENETICS
|
2011年
/
7卷
/
03期
基金:
美国国家科学基金会;
美国国家卫生研究院;
关键词:
REVERSE-TRANSCRIPTASE;
TERMINAL TRANSFERASE;
RNA COMPONENT;
LENGTH;
TETRAHYMENA;
GENE;
HAPLOINSUFFICIENCY;
SEQUENCE;
ENZYME;
D O I:
10.1371/journal.pgen.1001352
中图分类号:
Q3 [遗传学];
学科分类号:
071007 ;
090102 ;
摘要:
The telomerase reverse transcriptase synthesizes new telomeres onto chromosome ends by copying from a short template within its integral RNA component. During telomere synthesis, telomerase adds multiple short DNA repeats successively, a property known as repeat addition processivity. However, the consequences of defects in processivity on telomere length maintenance are not fully known. Germline mutations in telomerase cause haploinsufficiency in syndromes of telomere shortening, which most commonly manifest in the age-related disease idiopathic pulmonary fibrosis. We identified two pulmonary fibrosis families that share two non-synonymous substitutions in the catalytic domain of the telomerase reverse transcriptase gene hTERT: V791I and V867M. The two variants fell on the same hTERT allele and were associated with telomere shortening. Genealogy suggested that the pedigrees shared a single ancestor from the nineteenth century, and genetic studies confirmed the two families had a common founder. Functional studies indicated that, although the double mutant did not dramatically affect first repeat addition, hTERT V791I-V867M showed severe defects in telomere repeat addition processivity in vitro. Our data identify an ancestral mutation in telomerase with a novel loss-of-function mechanism. They indicate that telomere repeat addition processivity is a critical determinant of telomere length and telomere-mediated disease.
引用
收藏
页数:9
相关论文