Evidence for increased expression of the vesicular glutamate transporter, VGLUT1, by a course of antidepressant treatment

被引:53
作者
Tordera, RM [1 ]
Pei, Q [1 ]
Sharp, T [1 ]
机构
[1] Univ Oxford, Dept Pharmacol, Oxford OX1 3QT, England
关键词
antidepressant; glutamate; vesicular glutamate transporter;
D O I
10.1111/j.1471-4159.2005.03192.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The therapeutic effect of a course of antidepressant treatment is believed to involve a cascade of neuroadaptive changes in gene expression leading to increased neural plasticity. Because glutamate is linked to mechanisms of neural plasticity, this transmitter may play a role in these changes. This study investigated the effect of antidepressant treatment on expression of the vesicular glutamate transporters, VGLUT1-3 in brain regions of the rat. Repeated treatment with fluoxetine, paroxetine or desipramine increased VGLUT1 mRNA abundance in frontal, orbital, cingulate and parietal cortices, and regions of the hippocampus. Immunoautoradiography analysis showed that repeated antidepressant drug treatment increased VGLUT1 protein expression. Repeated electroconvulsive shock (ECS) also increased VGLUT1 mRNA abundance in regions of the cortex and hippocampus compared to sham controls. The antidepressant drugs and ECS did not alter VGLUT1 mRNA abundance after acute administration, and no change was detected after repeated treatment with the antipsychotic agents, haloperidol and chlorpromazine. In contrast to VGLUT1, the different antidepressant treatments did not commonly increase the expression of VGLUT2 or VGLUT3 mRNA. These data suggest that a course of antidepressant drug or ECS treatment increases expression of VGLUT1, a key gene involved in the regulation of glutamate secretion.
引用
收藏
页码:875 / 883
页数:9
相关论文
共 59 条
[1]   Serotonin induces excitatory postsynaptic potentials in apical dendrites of neocortical pyramidal cells [J].
Aghajanian, GK ;
Marek, GJ .
NEUROPHARMACOLOGY, 1997, 36 (4-5) :589-599
[2]   Effect of antidepressant drugs on dopamine D1 and D2 receptor expression and dopamine release in the nucleus accumbens of the rat [J].
Ainsworth, K ;
Smith, SE ;
Zetterström, TSC ;
Pei, Q ;
Franklin, M ;
Sharp, T .
PSYCHOPHARMACOLOGY, 1998, 140 (04) :470-477
[3]   Electroconvulsive seizures regulate gene expression of distinct neurotrophic signaling pathways [J].
Altar, CA ;
Laeng, P ;
Jurata, LW ;
Brockman, JA ;
Lemire, A ;
Bullard, J ;
Bukhman, YV ;
Young, TA ;
Charles, V ;
Palfreyman, MG .
JOURNAL OF NEUROSCIENCE, 2004, 24 (11) :2667-2677
[4]   N-methyl-D-aspartate receptor-mediated increase of neurogenesis in adult rat dentate gyrus following stroke [J].
Arvidsson, A ;
Kokaia, Z ;
Lindvall, O .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2001, 14 (01) :10-18
[5]   Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone [J].
Banasr, M ;
Hery, M ;
Printemps, R ;
Daszuta, A .
NEUROPSYCHOPHARMACOLOGY, 2004, 29 (03) :450-460
[6]   CURRENT ADVANCES AND TRENDS IN THE TREATMENT OF DEPRESSION [J].
BLIER, P ;
DEMONTIGNY, C .
TRENDS IN PHARMACOLOGICAL SCIENCES, 1994, 15 (07) :220-226
[7]   Acute application of the tricyclic antidepressant desipramine presynaptically stimulates the exocytosis of glutamate in the hippocampus [J].
Bouron, A ;
Chatton, JY .
NEUROSCIENCE, 1999, 90 (03) :729-736
[8]  
Brown JM, 2001, J PHARMACOL EXP THER, V296, P762
[9]  
CHAPUT Y, 1991, NEUROPSYCHOPHARMACOL, V5, P219
[10]   Bi-phasic change in BDNF gene expression following antidepressant drug treatment [J].
Coppell, AL ;
Pei, Q ;
Zetterström, TSC .
NEUROPHARMACOLOGY, 2003, 44 (07) :903-910