Identification of defect sites on MgO(100) thin films by decoration with Pd atoms and studying CO adsorption properties

被引:97
作者
Abbet, S
Riedo, E
Brune, H
Heiz, U [1 ]
Ferrari, AM
Giordano, L
Pacchioni, G
机构
[1] Univ Lausanne, Inst Phys Matiere Condensee, CH-1015 Lausanne, Switzerland
[2] Ecole Polytech Fed Lausanne, Inst Phys Expt, CH-1015 Lausanne, Switzerland
[3] Univ Turin, Dipartimento Chim IFM, I-10125 Turin, Italy
[4] Univ Milan, Dipartimento Sci Mat, I-20125 Milan, Italy
[5] Ist Nazl Fis Mat, I-20125 Milan, Italy
关键词
D O I
10.1021/ja0157651
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
CO adsorption on Pd atoms deposited on MgO(100) thin films has been studied by means of thermal desorption (TDS) and Fourier transform infrared (FTIR) spectroscopies. CO desorbs from the adsorbed Pd atoms at a temperature of about 250 K, which corresponds to a binding energy, E-b, of about 0.7 +/- 0.1 eV. FTIR spectra suggest that at saturation two different sites for CO adsorption exist on a single Pd atom. The vibrational frequency of the most stable, singly adsorbed CO molecule is 2055 cm(-1). Density functional cluster model calculations have been used to model possible defect sites at the MgO surface where the Pd atoms are likely to be adsorbed. CO/Pd complexes located at regular or low-coordinated O anions of the surface exhibit considerably stronger binding energies, E-b = 2-2.5 eV, and larger vibrational shifts than were observed in the experiment. CO/Pd complexes located at oxygen vacancies (F or F+ centers) are characterized by much smaller binding energies, E-b = 0.5 +/- 0.2 or 0.7 +/- 0.2 eV, which are in agreement with the experimental value. CO/Pd complexes located at the paramagnetic F+ centers show vibrational frequencies in closest agreement with the experimental data. These comparisons therefore suggest that the Pd atoms are mainly adsorbed at oxygen vacancies.
引用
收藏
页码:6172 / 6178
页数:7
相关论文
共 59 条