Regulation of beta(2)-adrenergic receptor (beta(2)AR) levels by glucocorticoids is a physiologically important mechanism for altering beta(2)AR responsiveness. Glucocorticoids increase beta(2)AR density by increasing the rate of beta(2)AR gene transcription, but the cis-elements involved have not been well characterized. We now show that one of six potential glucocorticoid response elements (GREs) in the 5'-flanking region of the rat beta(2)AR gene is necessary for glucocorticoid-dependent stimulation of receptor gene expression. Using a nested set of deletion fragments of the rat beta(2)AR gene 5'-flanking region fused to a luciferase reporter gene, glucocorticoid-dependent induction of reporter gene expression in HepG2 cells was localized to a region between positions -643 and -152, relative to the transcription initiation site. In electrophoretic mobility shift assays, a double-stranded oligonucleotide incorporating a near-consensus GRE from this region (positions -379 to -365) formed complexes with the human recombinant glucocorticoid receptor, as well as with nuclear protein from dexamethasone-treated HepG2 cells. Mutation of a single base within this GRE sequence greatly diminished interaction of the mutated oligonucleotide with the human recombinant glucocorticoid receptor. The functional activity of the GRE was characterized using a luciferase reporter construct driven by a minimal thymidine kinase promoter. In HepG2 cells transfected with constructs containing the GRE, dexamethasone increased reporter gene expression approximately 3-fold, whereas a dexamethasone effect was not observed with constructs lacking the GRE. Taken together, these findings show that a GRE located at positions -379 to -365 in the 5'-flanking region of the rat beta(2)AR gene mediates glucocorticoid stimulation of beta(2)AR gene transcription.