Serotonin modulates spike backpropagation and associated [Ca2+]i changes in the apical dendrites of hippocampal CA1 pyramidal neurons

被引:30
作者
Sandler, VM [1 ]
Ross, WN [1 ]
机构
[1] New York Med Coll, Dept Physiol, Valhalla, NY 10595 USA
关键词
D O I
10.1152/jn.1999.81.1.216
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The effect of serotonin (5-HT) on somatic and dendritic properties was analyzed in pyramidal neurons from the CA1 region in slices from the rat hippocampus. Bath-applied 5-HT(10 mu M) hyperpolarized the soma and apical dendrites and caused a conductance increase at both locations. In the dendrites (200-300 mu m from the soma) trains of antidromically activated, backpropagating action potentials had lower peak potentials in 5-HT than in normal artificial cerebrospinal fluid. Spike amplitudes were about the same in the two solutions. Similar results were found when the action potentials were evoked synaptically with stimulation in the stratum oriens. In the soma, spike amplitudes increased in 5-HT, with only a small decrease in the peak potential. Calcium concentration measurements, made with bis-fura-2 injected through patch electrodes, showed that the amplitude of the [Ca2+](i) changes was reduced at all locations in 5-HT. The reduction of the [Ca2+](i) change in the soma was confirmed in slices where cells were loaded with fura-2-AM. The reduction at the soma in 5-HT, where the spike amplitude increased, suggests that the reduction is due primarily to direct modulation of Ca2+ channels. In the dendrites, the reduction is due to a combination of this channel modulation and the lowering of the peak potential of the action potentials.
引用
收藏
页码:216 / 224
页数:9
相关论文
共 45 条
[1]   PHARMACOLOGICALLY DISTINCT ACTIONS OF SEROTONIN ON SINGLE PYRAMIDAL NEURONS OF THE RAT HIPPOCAMPUS RECORDED INVITRO [J].
ANDRADE, R ;
NICOLL, RA .
JOURNAL OF PHYSIOLOGY-LONDON, 1987, 394 :99-124
[2]   REGENERATIVE PROPERTIES OF PYRAMIDAL CELL DENDRITES IN AREA CA1 OF THE RAT HIPPOCAMPUS [J].
ANDREASEN, M ;
LAMBERT, JDC .
JOURNAL OF PHYSIOLOGY-LONDON, 1995, 483 (02) :421-441
[3]   MODULATION OF VERTEBRATE NEURONAL CALCIUM CHANNELS BY TRANSMITTERS [J].
ANWYL, R .
BRAIN RESEARCH REVIEWS, 1991, 16 (03) :265-281
[4]   INHIBITION OF N-TYPE AND P-TYPE CALCIUM CURRENTS AND THE AFTER HYPERPOLARIZATION IN RAT MOTONEURONS BY SEROTONIN [J].
BAYLISS, DA ;
UMEMIYA, M ;
BERGER, AJ .
JOURNAL OF PHYSIOLOGY-LONDON, 1995, 485 (03) :635-647
[5]   INTRACELLULAR CA2+ BUFFERS DISRUPT MUSCARINIC SUPPRESSION OF CA2+ CURRENT AND M-CURRENT IN RAT SYMPATHETIC NEURONS [J].
BEECH, DJ ;
BERNHEIM, L ;
MATHIE, A ;
HILLE, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (02) :652-656
[6]   WHOLE CELL RECORDING FROM NEURONS IN SLICES OF REPTILIAN AND MAMMALIAN CEREBRAL-CORTEX [J].
BLANTON, MG ;
LOTURCO, JJ ;
KRIEGSTEIN, AR .
JOURNAL OF NEUROSCIENCE METHODS, 1989, 30 (03) :203-210
[7]   Pattern and inhibition-dependent invasion of pyramidal cell dendrites by fast spikes in the hippocampus in vivo [J].
Buzsaki, G ;
Penttonen, M ;
Nadasdy, Z ;
Bragin, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (18) :9921-9925
[8]   FREQUENCY-DEPENDENT PROPAGATION OF SODIUM ACTION-POTENTIALS IN DENDRITES OF HIPPOCAMPAL CA1 PYRAMIDAL NEURONS [J].
CALLAWAY, JC ;
ROSS, WN .
JOURNAL OF NEUROPHYSIOLOGY, 1995, 74 (04) :1395-1403
[9]  
CALLAWAY JC, 1995, J NEUROSCI, V15, P2777
[10]   Inhibition of dendritic calcium influx by activation of G-protein-coupled receptors in the hippocampus [J].
Chen, HM ;
Lambert, NA .
JOURNAL OF NEUROPHYSIOLOGY, 1997, 78 (06) :3484-3488