Phylogenetic analysis of condensation domains in the nonribosomal peptide synthetases

被引:38
作者
Roongsawang, N
Lim, SP
Washio, K
Takano, K
Kanaya, S
Morikawa, M [1 ]
机构
[1] Hokkaido Univ, Grad Sch Environm Sci, Div Biosphere Sci, Kita Ku, Sapporo, Hokkaido 0608010, Japan
[2] Osaka Univ, Grad Sch Engn, Dept Mat & Life Sci, Suita, Osaka 5650871, Japan
基金
日本学术振兴会;
关键词
nonribosomal peptide synthetases; nonribosomal peptides; condensation domain; D-amino acid; cyclic lipopeptide;
D O I
10.1016/j.femsle.2005.08.041
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Condensation (C) domains in the nonribosomal peptide synthetases are capable of catalyzing peptide bond formation between two consecutively bound various amino acids. C-domains coincide in frequency with the number of peptide bonds in the product peptide. In this study, a phylogenetic approach was used to investigate structural diversity of bacterial C-domains. Phylogenetic trees show that the C-domains are clustered into three functional groups according to the types of substrate donor molecules. They are L-peptidyl donors, D-peptidyl donors, and N-acyl donors. The fact that C-domain structure is not subject to optical configuration of amino acid acceptor molecules supports an idea that the conversion from L to D-form of incorporating amino acid acceptor occurs during or after peptide bond formation. L-peptidyl donors and D-peptidyl donors are suggested to separate before separating the lineage of Gram-positive and Gram-negative bacteria in the evolution process. (c) 2005 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:143 / 151
页数:9
相关论文
共 21 条
[1]   Chirality of peptide bond-forming condensation domains in nonribosomal peptide synthetases:: The C5 domain of tyrocidine synthetase is a DCL catalyst [J].
Clugston, SL ;
Sieber, SA ;
Marahiel, MA ;
Walsh, CT .
BIOCHEMISTRY, 2003, 42 (41) :12095-12104
[2]   SEQUENCE AND ANALYSIS OF THE GENETIC-LOCUS RESPONSIBLE FOR SURFACTIN SYNTHESIS IN BACILLUS-SUBTILIS [J].
COSMINA, P ;
RODRIGUEZ, F ;
DEFERRA, F ;
GRANDI, G ;
PEREGO, M ;
VENEMA, G ;
VANSINDEREN, D .
MOLECULAR MICROBIOLOGY, 1993, 8 (05) :821-831
[3]   The mycosubtilin synthetase of Bacillus subtilis ATCC6633:: A multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase [J].
Duitman, EH ;
Hamoen, LW ;
Rembold, M ;
Venema, G ;
Seitz, H ;
Saenger, W ;
Bernhard, F ;
Reinhardt, R ;
Schmidt, M ;
Ullrich, C ;
Stein, T ;
Leenders, F ;
Vater, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (23) :13294-13299
[4]  
Felsenstein J., 2005, PHYLIP PHYLOGENY INF, DOI DOI 10.1111/J.1096-0031.1989.TB00562.X
[5]  
GUNEZI E, 1997, J BIOL CHEM, V273, P32857
[6]   Evolutionary trace analysis of TGF-β and related growth factors:: implications for site-directed mutagenesis [J].
Innis, CA ;
Shi, JY ;
Blundell, TL .
PROTEIN ENGINEERING, 2000, 13 (12) :839-847
[7]   The structure of VibH represents nonribosomal peptide synthetase condensation, cyclization and epimerization domains [J].
Keating, TA ;
Marshall, CG ;
Walsh, CT ;
Keating, AE .
NATURE STRUCTURAL BIOLOGY, 2002, 9 (07) :522-526
[8]   Molecular and biochemical characterization of the protein template controlling biosynthesis of the lipopeptide lichenysin [J].
Konz, D ;
Doekel, S ;
Marahiel, MA .
JOURNAL OF BACTERIOLOGY, 1999, 181 (01) :133-140
[9]   An evolutionary trace method defines binding surfaces common to protein families [J].
Lichtarge, O ;
Bourne, HR ;
Cohen, FE .
JOURNAL OF MOLECULAR BIOLOGY, 1996, 257 (02) :342-358
[10]   Functional and transcriptional analyses of a fengycin synthetase gene, fenC, from Bacillus subtilis [J].
Lin, TP ;
Chen, CL ;
Chang, LK ;
Tschen, JSM ;
Liu, ST .
JOURNAL OF BACTERIOLOGY, 1999, 181 (16) :5060-5067