Enhancement of Thermal Energy Transport Across Graphene/Graphite and Polymer Interfaces: A Molecular Dynamics Study

被引:347
作者
Luo, Tengfei [1 ]
Lloyd, John R. [2 ]
机构
[1] Univ Notre Dame, Notre Dame, IN 46556 USA
[2] USN, Postgrad Sch, Monterey, CA 93943 USA
基金
美国国家科学基金会;
关键词
graphene; graphite; polymers; thermal transport; nanocomposites; CARBON NANOTUBES; HEAT-TRANSFER; CONDUCTIVITY; NANOCOMPOSITES; COMPOSITES; GRAPHITE; PHASE; GAS;
D O I
10.1002/adfm.201103048
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Understanding thermal energy transport in polymeric nanocomposite materials is important to the engineering of polymer composites with better engineered heat transfer properties. Interfacial thermal resistance between the filling particles and the polymer matrices is a major bottleneck for the thermal conductivity improvement of polymer composite materials. Here, thermal energy transport in graphene/graphite-polymer (paraffin wax-C30H62) composite systems are systematically studied using molecular dynamics simulations. The influences of graphene size, interfacial bonding strength, and polymer density on the interfacial thermal transport are studied. According to the simulation results, approaches to improve interfacial thermal transport are proposed. Spectral analysis is performed to explore the mechanism of thermal transport. It is found that thermal energy transport across graphene/graphite-polymer interfaces can be enhanced by increasing the polymer density and graphene size or forming covalent bonds between the graphite edges and polymer molecules. The results offer valuable guidance on improving thermal transport properties of polymeric nanocomposite.
引用
收藏
页码:2495 / 2502
页数:8
相关论文
共 62 条
[1]  
Allen M. P., 2017, COMPUTER SIMULATION
[2]   THERMAL-CONDUCTIVITY OF GLASSES - THEORY AND APPLICATION TO AMORPHOUS SI [J].
ALLEN, PB ;
FELDMAN, JL .
PHYSICAL REVIEW LETTERS, 1989, 62 (06) :645-648
[3]   Diffusons, locons and propagons: character of atomic vibrations in amorphous Si [J].
Allen, PB ;
Feldman, JL ;
Fabian, J ;
Wooten, F .
PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1999, 79 (11-12) :1715-1731
[4]   Unusually high thermal conductivity of carbon nanotubes [J].
Berber, S ;
Kwon, YK ;
Tománek, D .
PHYSICAL REVIEW LETTERS, 2000, 84 (20) :4613-4616
[5]   Carbon nanotube composites for thermal management [J].
Biercuk, MJ ;
Llaguno, MC ;
Radosavljevic, M ;
Hyun, JK ;
Johnson, AT ;
Fischer, JE .
APPLIED PHYSICS LETTERS, 2002, 80 (15) :2767-2769
[6]   Effective Heat Transfer Properties of Graphene Sheet Nanocomposites and Comparison to Carbon Nanotube Nanocomposites [J].
Bui, Khoa ;
Duong, Hai M. ;
Striolo, Alberto ;
Papavassiliou, Dimitrios V. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (10) :3872-3880
[7]   Thermal boundary resistance between single-walled carbon nanotubes and surrounding matrices [J].
Carlborg, Carl Fredrik ;
Shiomi, Junichiro ;
Maruyama, Shigeo .
PHYSICAL REVIEW B, 2008, 78 (20)
[8]   Anomalous thermal conductivity enhancement in nanotube suspensions [J].
Choi, SUS ;
Zhang, ZG ;
Yu, W ;
Lockwood, FE ;
Grulke, EA .
APPLIED PHYSICS LETTERS, 2001, 79 (14) :2252-2254
[9]   Electrical applications of carbon materials [J].
Chung, DDL .
JOURNAL OF MATERIALS SCIENCE, 2004, 39 (08) :2645-2661
[10]  
Dang XN, 2011, NAT NANOTECHNOL, V6, P377, DOI [10.1038/NNANO.2011.50, 10.1038/nnano.2011.50]