Wear assessment in a biodiesel fueled compression ignition engine

被引:80
作者
Agarwai, AK [1 ]
Bijwe, J
Das, LM
机构
[1] Indian Inst Technol, Dept Mech Engn, Kanpur 208016, Uttar Pradesh, India
[2] Indian Inst Technol, ITTMEC, New Delhi 110016, India
[3] Indian Inst Technol, Ctr Energy Studies, New Delhi 110016, India
来源
JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME | 2003年 / 125卷 / 03期
关键词
D O I
10.1115/1.1501079
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Biodiesel is prepared using linseed oil and methanol by the process of transesterification. Use of linseed oil methyl ester (LOME) in a compression ignition engine was found to develop a highly compatible engine-fuel system with low emission characteristics. Two similar engines were operated using optimum biodiesel blend and mineral diesel oil, respectively. These were subjected to long-term endurance tests. Lubricating oil samples drawn from both engines after a fixed interval were subjected to elemental analysis. Quantification of various metal debris concentrations was done by atomic absorption spectroscopy (AAS). Wear metals were found to be about 30% lower for a biodiesel-operated engine system. Lubricating oil samples were also subjected to ferrography indicating lower wear debris concentrations for a biodiesel-operated engine. The additional lubricating property of LOME present in the fuel resulted in lower wear and improved life of moving components in a biodiesel-fuelled engine. However this needed experimental verification and quantification. A series of experiments were thus conducted to compare the lubricity of various concentrations of LOME in biodiesel blends. Long duration tests were conducted using reciprocating motion in an SRV optimol wear tester to evaluate the coefficient of friction, specific wear rates, etc. The extent of damage, coefficient of friction, and specific wear rates decreased with increase in the percentage of LOME in the biodiesel blend. Scanning electron microscopy was conducted on the surfaces exposed to wear The disk and pin using 20% biodiesel blend as the lubricating oil showed lesser damage compared to the one subjected to diesel oil as the lubricating fluid, confirming additional lubricity of biodiesel.
引用
收藏
页码:820 / 826
页数:7
相关论文
共 11 条
  • [1] Biodiesel development and characterization for use as a fuel in compression ignition engines
    Agarwal, AK
    Das, LM
    [J]. JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2001, 123 (02): : 440 - 447
  • [2] AGARWAL AK, 2000, LARGE BORE ENG DESIG, V352, P45
  • [3] *AM BIOF ASS, 1994, BIOD TECHN PERF REG
  • [4] [Anonymous], THESIS INDIAN I TECH
  • [5] FREEDMAN B, 1986, JAOCS, V63
  • [6] Krawczyk T., 1996, INFORM, V7, P801
  • [7] PETERSON CL, 1981, ALCOHOL VEGETABLE OI
  • [8] RICHARDSON DE, 1999, 912388 SAE
  • [9] *TAT EN RES I, 1998, TER EN EC SIM EV MOD
  • [10] Macroeconomic effects of a community-based biodiesel production system
    VanDyne, DL
    Weber, JA
    Braschler, CH
    [J]. BIORESOURCE TECHNOLOGY, 1996, 56 (01) : 1 - 6