Use of adeno-associated viral vector for delivery of small interfering RNA

被引:154
作者
Tomar, RS
Matta, H
Chaudhary, PM
机构
[1] Univ Texas, SW Med Ctr, Hamon Ctr Therapeut Oncol Res, Dallas, TX 75390 USA
[2] Univ Texas, SW Med Ctr, Div Hematol Oncol, Dallas, TX 75390 USA
[3] Univ Texas, SW Med Ctr, Dept Internal Med, Dallas, TX 75390 USA
关键词
AAV; siRNA; RNAi; RNA interference;
D O I
10.1038/sj.onc.1206733
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Post-transcriptional gene silencing by small interfering RNAs (siRNAs) is rapidly becoming a powerful tool for genetic analysis of mammalian cells. Delivery of siRNA into mammalian cells is usually achieved via the transfection of double-stranded oligonucleotides or plasmids encoding RNA polymerase III promoter-driven small hairpin RNA. Recently, retroviral vectors have been used for siRNA delivery, which overcome the problem of poor transfection efficiency seen with the plasmid-based systems. However, retroviral vectors have several limitations, such as the need for active cell division for gene transduction, oncogenic potential, low titers and gene silencing. In this report, we have adapted a commercially available adenoassociated virus (AAV) vector for siRNA delivery into mammalian cells. We demonstrate the ability of this modified vector to deliver efficiently siRNA into HeLa S3 cells and downregulate p53 and caspase 8 expression. Our results suggest that AAV-based vectors are efficient vectors for the delivery of siRNA into mammalian cells. Based on the known ability of these vectors to infect both dividing and nondividing cells, their use as a therapeutic tool for the delivery of siRNA deserves further study.
引用
收藏
页码:5712 / 5715
页数:4
相关论文
共 17 条
[1]   Retroviral delivery of small interfering RNA into primary cells [J].
Barton, GM ;
Medzhitov, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (23) :14943-14945
[2]   Stable suppression of tumorigenicity by virus-mediated RNA interference [J].
Brummelkamp, TR ;
Bernards, R ;
Agami, R .
CANCER CELL, 2002, 2 (03) :243-247
[3]   A system for stable expression of short interfering RNAs in mammalian cells [J].
Brummelkamp, TR ;
Bernards, R ;
Agami, R .
SCIENCE, 2002, 296 (5567) :550-553
[4]   Retrovirus-delivered siRNA [J].
Devroe E. ;
Silver P.A. .
BMC Biotechnology, 2 (1)
[5]   Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells [J].
Elbashir, SM ;
Harborth, J ;
Lendeckel, W ;
Yalcin, A ;
Weber, K ;
Tuschl, T .
NATURE, 2001, 411 (6836) :494-498
[6]   A species of small antisense RNA in posttranscriptional gene silencing in plants [J].
Hamilton, AJ ;
Baulcombe, DC .
SCIENCE, 1999, 286 (5441) :950-952
[7]   An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells [J].
Hammond, SM ;
Bernstein, E ;
Beach, D ;
Hannon, GJ .
NATURE, 2000, 404 (6775) :293-296
[8]   Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells [J].
Lee, NS ;
Dohjima, T ;
Bauer, G ;
Li, HT ;
Li, MJ ;
Ehsani, A ;
Salvaterra, P ;
Rossi, J .
NATURE BIOTECHNOLOGY, 2002, 20 (05) :500-505
[9]   INTERACTIONS BETWEEN DOUBLE-STRANDED-RNA REGULATORS AND THE PROTEIN-KINASE DAI [J].
MANCHE, L ;
GREEN, SR ;
SCHMEDT, C ;
MATHEWS, MB .
MOLECULAR AND CELLULAR BIOLOGY, 1992, 12 (11) :5238-5248
[10]   U6 promoter-driven siRNAs with four uridine 3′ overhangs efficiently suppress targeted gene expression in mammalian cells [J].
Miyagishi, M ;
Taira, K .
NATURE BIOTECHNOLOGY, 2002, 20 (05) :497-500